7,585 research outputs found

    Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    Get PDF
    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs

    Pressure-Temperature Phase Diagram of Antiferromagnetism and Superconductivity in CeRhIn5 and CeIn3 : In-NQR Study under Pressure

    Full text link
    We report the novel pressure(PP) - temperature(TT) phase diagram of antiferromagnetism and superconductivity in CeRhIn5_5 and CeIn3_3 revealed by the 115^{115}In nuclear-spin-lattice-relaxation (T1T_1) measurement. In the itinerant magnet CeRhIn5_5, we found that the N\'eel temperature TNT_N is reduced at PP \geq 1.23 GPa with an emergent pseudogap behavior. In CeIn3_3, the localized magnetic character is robust against the application of pressure up to PP \sim 1.9 GPa, beyond which the system evolves into an itinerant regime in which the resistive superconducting phase emerges. We discuss the relationship between the phase diagram and the magnetic fluctuations.Comment: 4 pages, 3 figures, to be published in Phys.Rev.B. Rapid

    Entropy-Corrected New Agegraphic Dark Energy Model in Horava-Lifshitz Gravity

    Full text link
    In this work, we have considered the entropy-corrected new agegraphic dark energy (ECNADE) model in Horava-Lifshitz gravity in FRW universe. We have discussed the correspondence between ECNADE and other dark energy models such as DBI-essence,Yang-Mills dark energy, Chameleon field, Non-linear electrodynamics field and hessence dark energy in the context of Horava-Lifshitz gravity and reconstructed the potentials and the dynamics of the scalar field theory which describe the ECNADE.Comment: 12 page

    Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico

    Get PDF
    The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures. The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the M_w 7.2 2010 El Mayor–Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault. Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130° E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15 s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone

    Statefinder and Om Diagnostics for Interacting New Holographic Dark Energy Model and Generalized Second Law of Thermodynamics

    Full text link
    In this work, we have considered that the flat FRW universe is filled with the mixture of dark matter and the new holographic dark energy. If there is an interaction, we have investigated the natures of deceleration parameter, statefinder and OmOm diagnostics. We have examined the validity of the first and generalized second laws of thermodynamics under these interactions on the event as well as apparent horizon. It has been observed that the first law is violated on the event horizon. However, the generalized second law is valid throughout the evolution of the universe enveloped by the apparent horizon. When the event horizon is considered as the enveloping horizon, the generalized second law is found to break down excepting at late stage of the universe.Comment: 9 pages, 13 figure

    Quantum Hall fluctuations and evidence for charging in the quantum Hall effect

    Full text link
    We find that mesoscopic conductance fluctuations in the quantum Hall regime in silicon MOSFETs display simple and striking patterns. The fluctuations fall into distinct groups which move along lines parallel to loci of integer filling factor in the gate voltage-magnetic field plane. Also, a relationship appears between the fluctuations on quantum Hall transitions and those found at low densities in zero magnetic field. These phenomena are most naturally attributed to charging effects. We argue that they are the first unambiguous manifestation of interactions in dc transport in the integer quantum Hall effect.Comment: 4 pages RevTeX including 4 postscript bitmapped figure
    corecore