65,765 research outputs found

    Reply to [arXiv:1105.5147] "Are GRB 090423 and Similar Bursts due to Superconducting Cosmic Strings?"

    Full text link
    The GRB outflow driven by superconducting cosmic strings is likely to be an arc rather than a usually-considered spherical cap. In such a case, the afterglows of the cosmic string GRBs could be basically consistent with the observation of the high-redshift GRBs.Comment: 2 pages, 1 figure, to appear in Phys. Rev. Let

    Diverse Temporal Properties of GRB Afterglow

    Full text link
    The detection of delayed X-ray, optical and radio emission, "afterglow", associated with γ\gamma-ray bursts (GRBs) is consistent with fireball models, where the emission are produced by relativistic expanding blast wave, driven by expanding fireball at cosmogical distances. The emission mechanisms of GRB afterglow have been discussed by many authors and synchrotron radiation is believed to be the main mechanism. The observations show that the optical light curves of two observed gamma-ray bursts, GRB970228 and GRB GRB970508, can be described by a simple power law, which seems to support the synchrotron radiation explanation. However, here we shall show that under some circumstances, the inverse Compton scattering (ICS) may play an important role in emission spectrum and this may influence the temporal properties of GRB afterglow. We expect that the light curves of GRB afterglow may consist of multi-components, which depends on the fireball parameters.Comment: Latex, no figures, minor correctio

    SV-map between Type I and Heterotic Sigma Models

    Full text link
    The scattering amplitudes of gauge bosons in heterotic and open superstring theories are related by the single-valued projection which yields heterotic amplitudes by selecting a subset of multiple zeta value coefficients in the α\alpha' (string tension parameter) expansion of open string amplitudes. In the present work, we argue that this relation holds also at the level of low-energy expansions (or individual Feynman diagrams) of the respective effective actions, by investigating the beta functions of two-dimensional sigma models describing world-sheets of open and heterotic strings. We analyze the sigma model Feynman diagrams generating identical effective action terms in both theories and show that the heterotic coefficients are given by the single-valued projection of the open ones. The single-valued projection appears as a result of summing over all radial orderings of heterotic vertices on the complex plane representing string world-sheet.Comment: 28 page

    Composite Geometric Phase for Multipartite Entangled States

    Get PDF
    When an entangled state evolves under local unitaries, the entanglement in the state remains fixed. Here we show the dynamical phase acquired by an entangled state in such a scenario can always be understood as the sum of the dynamical phases of its subsystems. In contrast, the equivalent statement for the geometric phase is not generally true unless the state is separable. For an entangled state an additional term is present, the mutual geometric phase, that measures the change the additional correlations present in the entangled state make to the geometry of the state space. For NN qubit states we find this change can be explained solely by classical correlations for states with a Schmidt decomposition and solely by quantum correlations for W states.Comment: 4 pages, 1 figure, improved presentation, results and conclusions unchanged from v1. Accepted for publication in PR

    Modeling the IDV emissions of the BL Lac Objects with a Langevin type stochastic differential equation

    Full text link
    In this paper, we introduce a simplified model for explaining the observations of the optical intraday variability (IDV) of the BL Lac Objects. We assume that the source of the IDV are the stochastic oscillations of an accretion disk around a supermassive black hole. The Stochastic Fluctuations on the vertical direction of the accretion disk are described by using a Langevin type equation with a damping term and a random, white noise type force. Furthermore, the preliminary numerical simulation results are presented, which are based on the numerical analysis of the Langevin stochastic differential equation.Comment: 4 pages, 4 figures, accepted for publication in J. Astrophys. Ast

    Is GRO J1744-28 a Strange Star?

    Get PDF
    The unusal hard x-ray burster GRO J1744-28 recently discovered by the Compton Gamma-ray Observatory (GRO) can be modeled as a strange star with a dipolar magnetic field 1011\le 10^{11} Gauss. When the accreted mass of the star exceeds some critical mass, its crust may break, resulting in conversion of the accreted matter into strange matter and release of energy. Subsequently, a fireball may form and expand relativistically outward. The expanding fireball may interact with the surrounding interstellar medium, causing its kinetic energy to be radiated in shock waves, producing a burst of x-ray radiation. The burst energy, duration, interval and spectrum derived from such a model are consistent with the observations of GRO J1744-28.Comment: Latex, has been published in SCIENCE, Vol. 280, 40

    Suppression of low-energy Andreev states by a supercurrent in YBa_2Cu_3O_7-delta

    Full text link
    We report a coherence-length scale phenomenon related to how the high-Tc order parameter (OP) evolves under a directly-applied supercurrent. Scanning tunneling spectroscopy was performed on current-carrying YBa_2Cu_3O_7-delta thin-film strips at 4.2K. At current levels well below the theoretical depairing limit, the low-energy Andreev states are suppressed by the supercurrent, while the gap-like structures remain unchanged. We rule out the likelihood of various extrinsic effects, and propose instead a model based on phase fluctuations in the d-wave BTK formalism to explain the suppression. Our results suggest that a supercurrent could weaken the local phase coherence while preserving the pairing amplitude. Other possible scenarios which may cause the observed phenomenon are also discussed.Comment: 6 pages, 4 figures, to appear in Physical Review

    The topological glass in ring polymers

    Get PDF
    We study the dynamics of concentrated, long, semi-flexible, unknotted and unlinked ring polymers embedded in a gel by Monte Carlo simulation of a coarse-grained model. This involves the ansatz that the rings compactify into a duplex structure where they can be modelled as linear polymers. The classical polymer glass transition involves a rapid loss of microscopic freedom within the polymer molecule as the temperature is reduced toward Tg. Here we are interested in temperatures well above Tg where the polymers retain high microscopic mobility. We analyse the slowing of stress relaxation originating from inter-ring penetrations (threadings). For long polymers an extended network of quasi-topological penetrations forms. The longest relaxation time appears to depend exponentially on the ring polymer contour length, reminiscent of the usual exponential slowing (e.g., with temperature) in classical glasses. Finally, we discuss how this represents a universality class for glassy dynamics
    corecore