53 research outputs found

    Sample Mixed-Based Data Augmentation for Domestic Audio Tagging

    Get PDF
    Audio tagging has attracted increasing attention since last decade and has various potential applications in many fields. The objective of audio tagging is to predict the labels of an audio clip. Recently deep learning methods have been applied to audio tagging and have achieved state-of-the-art performance, which provides a poor generalization ability on new data. However due to the limited size of audio tagging data such as DCASE data, the trained models tend to result in overfitting of the network. Previous data augmentation methods such as pitch shifting, time stretching and adding background noise do not show much improvement in audio tagging. In this paper, we explore the sample mixed data augmentation for the domestic audio tagging task, including mixup, SamplePairing and extrapolation. We apply a convolutional recurrent neural network (CRNN) with attention module with log-scaled mel spectrum as a baseline system. In our experiments, we achieve an state-of-the-art of equal error rate (EER) of 0.10 on DCASE 2016 task4 dataset with mixup approach, outperforming the baseline system without data augmentation.Comment: submitted to the workshop of Detection and Classification of Acoustic Scenes and Events 2018 (DCASE 2018), 19-20 November 2018, Surrey, U

    Effect of Revegetation in Extremely Degraded Grassland on Carbon Density in Alpine Permafrost Regions

    No full text
    Revegetation has been proposed as an effective approach to restoring the extremely degraded grassland in the Qinghai–Tibetan Plateau (QTP). However, little is known about the effect of revegetation on ecosystem carbon density (ECD), especially in alpine permafrost regions. We compared aboveground biomass carbon density (ABCD), belowground biomass carbon density (BBCD), soil organic carbon density (SOCD), and ECD in intact alpine meadow, extremely degraded, and revegetated grasslands, as well as their influencing factors. Our results indicated that (1) ABCD, BBCD, SOCD, and ECD were significantly lower in extremely degraded grassland than in intact alpine meadow; (2) ABCD, SOCD, and ECD in revegetated grassland significantly increased by 93.46%, 16.88%, and 19.22%, respectively; (3) stepwise regression indicated that BBCD was mainly influenced by soil special gravity, and SOCD and ECD were controlled by freeze–thaw strength and soil temperature, respectively. This study provides a comprehensive survey of ECD and basic data for assessing ecosystem service functions in revegetated grassland of the alpine permafrost regions in the QTP

    Thermal Decomposition of Brominated Butyl Rubber

    No full text
    The thermal decomposition of brominated butyl rubber under air atmosphere was investigated by thermogravimetry (TG) and derivative thermogravimetry (DTG) at various heating rates. The kinetic parameters were evaluated by TG and the isoconversional method developed by Ozawa. One prominent decomposition stage was observed in the DTG curves at high heating rates, while an additional small peak was observed at low heating rates. The apparent activation energy determined using the TG method ranged from 219.31 to 228.13 kJ·mol−1 at various heating rates. The non-isothermal degradation was found to be a first-order reaction, and the activation energy, as determined by the isoconversional method, increased with an increase in mass loss. The kinetic data suggest that brominated butyl rubber has excellent thermal stability. This study can indirectly aid in improving rubber pyrolysis methods and in enhancing the heat resistance of materials

    Deep-Learning-Based Carrier Frequency Offset Estimation and Its Cross-Evaluation in Multiple-Channel Models

    No full text
    The most widely used Wi-Fi wireless communication system, which is based on OFDM, is currently developing quickly. The receiver must, however, accurately estimate the carrier frequency offset between the transmitter and the receiver due to the characteristics of the OFDM system that make it sensitive to carrier frequency offset. The autocorrelation of training symbols is typically used by the conventional algorithm to estimate the carrier frequency offset. Although this method is simple to use and low in complexity, it has poor estimation performance at low signal-to-noise ratios, which has a significant negative impact on the performance of the wireless communication system. Meanwhile, the design of the communication physical layer using deep-learning-based (DL-based) methods is receiving more and more attention but is rarely used in carrier frequency offset estimation. In this paper, we propose a DL-based carrier frequency offset (CFO) model architecture for 802.11n standard OFDM systems. With regard to multipath channel models with varied degrees of multipath fadding, the estimation error of the proposed model is 70.54% lower on average than that of the conventional method under 802.11n standard channel models, and the DL-based method can outperform the estimation range of conventional methods. Besides, the model trained in one channel environment and tested in another was cross-evaluated to determine which models could be used for deployment in the real world. The cross-evaluation demonstrates that the DL-based model can perform well over a large class of channels without extra training when trained under the worst-case (most severe) multipath channel model

    Sample mixed-based data augmentation for domestic audio tagging

    No full text
    Audio tagging has attracted increasing attention since last decade and has various potential applications in many fields. The objective of audio tagging is to predict the labels of an audio clip. Recently deep learning methods have been applied to audio tagging and\ud have achieved state-of-the-art performance, which provides a poor generalization ability on new data. However due to the limited size of audio tagging data such as DCASE data, the trained models tend to result in overfitting of the network. Previous data augmentation methods such as pitch shifting, time stretching and adding background noise do not show much improvement in audio tagging. In this paper, we explore the sample mixed data augmentation for the domestic audio tagging task, including mixup, SamplePairing and extrapolation. We apply a convolutional recurrent neural network (CRNN) with attention module with log-scaled mel spectrum as a baseline system. In our experiments, we achieve an state-of-the-art of equal error rate (EER) of 0.10 on DCASE 2016 task4 dataset with mixup approach, outperforming the baseline system without data augmentation

    Table4_An oxidative stress-related prognostic signature for indicating the immune status of oral squamous cell carcinoma and guiding clinical treatment.DOCX

    No full text
    Oral squamous cell carcinoma (OSCC) is the eighth most common cancer worldwide and presents high mortality. Oxidative stress, caused by reactive oxygen species accumulation, plays a crucial role in tumorigenesis, cancer progression, and drug resistance. Nevertheless, the specific prognostic and clinical values of oxidative stress-related genes (OSGs) in OSCC remain unclear. Here, we developed an oxidative stress-related prognostic signature according to mRNA expression data from The Cancer Genome Atlas (TCGA) database and evaluated its connections with the prognosis, clinical features, immune status, immunotherapy, and drug sensitivity of OSCC through a series of bioinformatics analyses. Finally, we filtered out six prognostic OSGs to construct a prognostic signature. On the basis of both TCGA-OSCC and GSE41613 cohorts, the signature was proven to be an independent prognostic factor with high accuracy and was confirmed to be an impactful indicator for predicting the prognosis and immune status of patients with OSCC. Additionally, we found that patients with high-risk scores may obtain greater benefit from immune checkpoint therapy compared to those with low-risk scores, and the risk score presented a close interaction with the tumor microenvironment and chemotherapy sensitivity. The prognostic signature may provide a valid and robust predictive tool that could predict the prognosis and immune status and guide clinicians to develop personalized therapeutic strategies for patients with OSCC.</p

    A Family of Automatic Modulation Classification Models Based on Domain Knowledge for Various Platforms

    No full text
    Identifying the modulation type of radio signals is challenging in both military and civilian applications such as radio monitoring and spectrum allocation. This has become more difficult as the number of signal types increases and the channel environment becomes more complex. Deep learning-based automatic modulation classification (AMC) methods have recently achieved state-of-the-art performance with massive amounts of data. However, existing models struggle to achieve the required level of accuracy, guarantee real-time performance at edge devices, and achieve higher classification performance on high-performance computing platforms when deployed on various platforms. In this paper, we present a family of AMC models based on communication domain knowledge for various computing platforms. The higher-order statistical properties of signals, customized data augmentation methods, and narrowband convolution kernels are the domain knowledge that is specifically employed to the AMC task and neural network backbone. We used separable convolution and depth-wise convolution with very few residual connections to create our lightweight model, which has only 4.61k parameters while maintaining accuracy. On the four different platforms, the classification accuracy and inference time outperformed those of the existing lightweight models. Meanwhile, we use the squeeze-and-excitation attention mechanism, channel shuffle module, and expert feature parallel branch to improve the classification accuracy. On the three most frequently used benchmark datasets, the high-accuracy models achieved state-of-the-art average accuracies of 64.63%, 67.22%, and 65.03%, respectively. Furthermore, we propose a generic framework for evaluating the complexity of deep learning models and use it to comprehensively assess the complexity strengths of the proposed models

    Image6_An oxidative stress-related prognostic signature for indicating the immune status of oral squamous cell carcinoma and guiding clinical treatment.JPEG

    No full text
    Oral squamous cell carcinoma (OSCC) is the eighth most common cancer worldwide and presents high mortality. Oxidative stress, caused by reactive oxygen species accumulation, plays a crucial role in tumorigenesis, cancer progression, and drug resistance. Nevertheless, the specific prognostic and clinical values of oxidative stress-related genes (OSGs) in OSCC remain unclear. Here, we developed an oxidative stress-related prognostic signature according to mRNA expression data from The Cancer Genome Atlas (TCGA) database and evaluated its connections with the prognosis, clinical features, immune status, immunotherapy, and drug sensitivity of OSCC through a series of bioinformatics analyses. Finally, we filtered out six prognostic OSGs to construct a prognostic signature. On the basis of both TCGA-OSCC and GSE41613 cohorts, the signature was proven to be an independent prognostic factor with high accuracy and was confirmed to be an impactful indicator for predicting the prognosis and immune status of patients with OSCC. Additionally, we found that patients with high-risk scores may obtain greater benefit from immune checkpoint therapy compared to those with low-risk scores, and the risk score presented a close interaction with the tumor microenvironment and chemotherapy sensitivity. The prognostic signature may provide a valid and robust predictive tool that could predict the prognosis and immune status and guide clinicians to develop personalized therapeutic strategies for patients with OSCC.</p
    • …
    corecore