5 research outputs found

    Tunable Magnetocaloric Effect in Ni-Mn-Ga Microwires

    Get PDF
    Abstract Magnetic refrigeration is of great interest due to its high energy efficiency, environmental friendliness and low cost. However, undesired hysteresis losses, concentrated working temperature interval (WTI) and poor mechanical stability are vital drawbacks that hinder its practical application. Off-stoichiometric Ni-Mn-Ga Heusler alloys are capable of giant magnetocaloric effect (MCE) and tunable transformation temperatures. Here, by creating Ni-Mn-Ga microwires with diameter of 35–80 μm using a melt-extraction technique, negligible hysteresis and relatively good mechanical stability are found due to the high specific surface area (SSA) that reduces incompatibility between neighboring grains. The high SSA also favors the element evaporation at high temperatures so that the transformation temperatures can be feasibly adjusted. Tunable magnetocaloric effect owing to different magneto-structural coupling states is realized by (i) composition design and subsequent tuning, which adjusts the temperature difference between the martensite transformation (MT) and the magnetic transition, and (ii) creation of gradient composition distribution state, which manipulates the MT range. Magnetic entropy change ΔS m ~−18.5 J kg−1 K−1 with relatively concentrated WTI and WTI up to ~60 K with net refrigeration capacity ~240 J kg−1 at 50 kOe are demonstrated in the present Ni-Mn-Ga microwires. This criterion is also applicable for other small-sized materials

    Orientation dependent cyclic stability of the elastocaloric effect in textured Ni-Mn-Ga alloys

    No full text
    High-performance elastocaloric materials require a large reversible elastocaloric effect and long life cyclic stability. Here, we fabricated textured polycrystalline Ni50.4Mn27.3Ga22.3 alloys by cost-effective casting method to create a texture. A strong correlation between the cyclic stability and the crystal orientation was demonstrated. A large reversible adiabatic temperature change ΔT ∼6 K was obtained when the external stress was applied parallel to direction. However, the ΔT decreased rapidly after 50 cycles, showing an unstable elastocaloric effect (eCE). On the other hand, when the external stress was applied perpendicular to , the adiabatic ΔT was smaller ∼4 K, but was stable over 100 cycles. This significantly enhanced eCE stability was related to the high yield strength, low transformation strain and much higher crack initiation-propagation resistances perpendicular to direction. This study provides a feasible strategy for optimizing the eCE property by creation of the texture structure in polycrystalline Ni-Mn-Ga and Ni-Mn-X (X= In, Sn, Sb) alloys
    corecore