31 research outputs found

    Contact and non-contact heart beat rate measurement techniques: Challenges and issues

    Get PDF
    The heart is the most important organ in the human body as it circulates the blood throughout the body through blood vessels. In the human circulatory system, the heart beats according to the body’s physical needs. Therefore, the physical condition of a person can be determined by observing the heartbeat rate (HBR). There are plenty of methods that can be used to measure the HBR. Among the methods, photoplethysmography (PPG), electrocardiogram (ECG) and the oscillometric method are the standard methods utilised in medical institutes for continuous measurement of the HBR of a patient. Out of these three methods, PPG is the only method which has evolved to a non-contact imaging-based method from the conventional contact sensory based method. The incentive for developing the non-contact-based imaging PPG method in measuring the HBR provides the advantage of excluding the direct contact of sensors on specific body parts. This brings huge improvements to remote monitoring of healthcare especially for the purpose of social distancing. Moreover, the rapid progression of technology (particularly the interactive electronic gadgets advancement) also motivates researchers and engineers to create a mobile application using the PPG imaging method, which is feasible in measuring the HBR. Hence, this study seeks to review and present the fundamental concept, the present research and the evolution of the aforementioned methods in measuring the HBR

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Measurement and analysis of physiological parameters using signal processing techniques

    Get PDF
    Health is very essential in everyone's life but to always stay healthy, it becomes a very challenging task especially for the citizens of developing countries. To have a good health, it is important to monitor the physiological parameters such as heart beat rate/pulse rate, blood pressure, blood oxygen saturation level, respiration rate, temperature and hemoglobin concentration frequently. Nowadays, there are many health care devices that have been developed for measuring physiological parameters but most of them are with limited parameter measurements, a single subject assessment and inconvenient for continuous measurements monitoring due to their contact basis. Furthermore, most of the devices require well-trained health professionals to operate because the sensors of the devices are to be attached to specific body part for acquiring data. Hence, these drawbacks make the devices suitable to be used at health care centers only. As an alternative approach, this research is focused on extracting physiological parameters through video image processing techniques using ordinary RGB camera. With a recorded video of about 10 seconds, it is possible to analyze multiple physiological parameters simultaneously. The physiological parameters that are extracted in this research include the vital signs i. e. heart beat rate/pulse rate, blood pressure and blood oxygen saturation level and two other physiological parameters i. e. hemoglobin concentration and skin surface profile. For evaluation of the results, electrocardiogram (ECG), pulse oximeter, oscillometric device and complete blood count (CBC) test are used to evaluate the results obtained from the developed video image processing techniques. From the results, it shows that the pulse rate measurements are quite accurate and within the American National Standard (ANSI/AAMI EC: 13: 2002) that is ±5bpm or 10% readout error. Besides, the pulse rate results obtained from the proposed method are able to correlate with ECG, pulse oximeter and oscillometric device by achieving correlation coefficient of 0.96, 0.97 and 0.95 respectively. In terms of blood pressure measurement, the mean absolute error and standard deviation for systolic and diastolic pressure from collected data is 4.45±3.05mmHg and 4.57±3.30mmHg respectively. These values also fulfill the requirement set by American National Standard (ANSI/AAMI/ISO 81060-2: 2013), which is 5±8mmHg. Furthermore, the correlation coefficient between the proposed method and oscillometric device is 0.81 and 0.78 for systolic and diastolic blood pressure respectively. For the blood oxygen saturation level measurements, the accuracy root mean square error (ARMSi)s 1.26% which is also able to accomplish the accuracy set in the International Standard ISO 9919: 2005 and ISO 80601-2-61-2011. By comparing the hemoglobin concentration obtained from the proposed method to the CBC test, the estimated hemoglobin concentration for the 2 participants are able within the difference of 1 g/dL. Although there is no standard equipment available for the evaluation of surface profile in this research, the developed method is evaluated by using the manual visual inspection approach and the findings of Ondimu and Murase's study. From the results, it shows that the developed method is feasible to estimate skin surface profile. In conclusion, the developed video image processing techniques for extracting multiple physiological parameters simultaneously are very beneficial and promise high potential due to its non-contact basis, harmless and suitable for continuous monitoring. Besides, developing the techniques as a smartphone app would make it more convenient to operate, economical and reduce the white coat effects, which cause the nervousness when measurements are taken by health professional

    Monsoonal variation of the marine phytoplankton community in Kota Kinabalu, Sabah

    Get PDF
    Monsoon-driven changes of environmental factors have been reported to be significantly variable and affects the phytoplankton community in tropical waters. This study examined the monsoonal changes of environmental parameters and the coastal phytoplankton community, including potential harmful algal bloom species, in the waters of Kota Kinabalu, Sabah, Malaysia. Bi-weekly observations were conducted from August 2017 to January 2019, covering the Southwest Monsoon (SWM), Northeast Monsoon (NEM), and inter-monsoon periods (IMPs). Sea surface temperature, salinity, and daily average photosynthetic active radiation (PAR) were significantly different between the SWM and the NEM. Total phytoplankton densities were significantly higher in the SWM with median cell densities of 1.12 × 104 cells L−1 compared to the NEM with 3.98 × 103 cells L−1. Nutrient measurements indicated that the waters were mesotrophic, with low phosphate (P) levels (1) and Si:P ratios (>16Si:1P) indicated that silicate was not limiting, a condition favourable for diatom growth. Phytoplankton dynamics shifted from a dinoflagellate-dominant community (Protoperidinium spp. and Prorocentrum spp.) to a diatom-dominant community (Leptocylindrus spp. and Dactyliosolen spp.) during the NEM, which was preceded by a peak in silicate and nitrate. Later, Chaetoceros spp. became dominant during the second SWM. The presence of intermittent increases in Margalefidinium polykrikoides and Pyrodinium bahamense var. compressum cell densities may trigger future blooms in these waters. Canonical Correspondence Analysis suggests that the dinoflagellate-dominant community was driven by changes in PAR and Si:N while changes in N:P and salinity shaped the diatom-dominant community. The shifts of the phytoplankton community composition in relation to the different monsoonal periods suggests that the monsoons function as environmental drivers which structure the phytoplankton community of this coastal ecosystem

    An exploratory study of decentralised shopping in Singapore.

    No full text
    This project has been conceived out of a desire to learn more about consumer shopping behaviour in Singapore which is a relatively unexplored area of research in this part of the world. Specifically, the exploratory study examines how Singaporean shoppers respond to the newly-built major retailing centres in the suburbs; the recently- opened Tiong Bahru Plaza is used as the focal model for this retail study. The findings of this study confirms the consumer profile of a mall shopper in Singapore as discovered by Kho (1993) but also reveals that the overseas and local mall shopper profile differs greatly. The Singaporean mall shopper is younger and has a lower household income as compared to his/her overseas counterpart. Location is also found to be one of, but not the main draw card that pulls consumers to decentralised malls. However, it underlies many of the reasons discovered on why consumers prefer a particular shopping mall over another. On the research front, this study provides a modest input in adding further empirical knowledge about some aspects of consumer shopping behaviour in Singapore. In general, the study contributes to existing theories and concepts in the field ofretailing. From a practical standpoint, the findings have some strategic implications for marketers in retailing with respect to the importance of store location and how this, among other things, can be used to attract shoppers.BUSINES

    Enhancement of particle filter approach for vehicle tracking via adaptive resampling algorithm,”

    No full text
    Abstract -Nowadays, vehicle tracking is a vital approach to assist and improve the road traffic control, surveillance and security systems by having the detail of the captured vehicle information. In past, many tracking techniques have been implemented and suffered from the well known &apos;occlusion&apos; problems. Increasing the accuracy of the tracking algorithm has caused the computational cost due to the inflexibility to adapt the partial and fully occluded situations. Besides occlusion, appearance of new objects and background noises in the captured videos increase the difficulties of continuously tracking the labelled vehicles. In this paper, an adaptive particle filter approach has been proposed as the tracking algorithm to solve the vehicle occlusion problem. In order to solve the common particle filter degeneracy problem, the proposed particle filter is equipped with the adaptive resampling algorithm which is capable of dealing with various occlusion incidents. The experimental results show that enhancement of the particle filter via resampling algorithm has been robustly tracking the vehicles, and significantly improve the accuracy in tracking the occluded vehicles without compromising the processing time
    corecore