837 research outputs found

    Genetic Screens in Human Cells Using the CRISPR-Cas9 System

    Get PDF
    The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.National Institutes of Health (U.S.) (CA103866)National Human Genome Research Institute (U.S.) (2U54HG003067-10)National Science Foundation (U.S.

    Experience-Independent Development of the Hamster Circadian Visual System

    Get PDF
    Experience-dependent functional plasticity is a hallmark of the primary visual system, but it is not known if analogous mechanisms govern development of the circadian visual system. Here we investigated molecular, anatomical, and behavioral consequences of complete monocular light deprivation during extended intervals of postnatal development in Syrian hamsters. Hamsters were raised in constant darkness and opaque contact lenses were applied shortly after eye opening and prior to the introduction of a light-dark cycle. In adulthood, previously-occluded eyes were challenged with visual stimuli. Whereas image-formation and motion-detection were markedly impaired by monocular occlusion, neither entrainment to a light-dark cycle, nor phase-resetting responses to shifts in the light-dark cycle were affected by prior monocular deprivation. Cholera toxin-b subunit fluorescent tract-tracing revealed that in monocularly-deprived hamsters the density of fibers projecting from the retina to the suprachiasmatic nucleus (SCN) was comparable regardless of whether such fibers originated from occluded or exposed eyes. In addition, long-term monocular deprivation did not attenuate light-induced c-Fos expression in the SCN. Thus, in contrast to the thalamocortical projections of the primary visual system, retinohypothalamic projections terminating in the SCN develop into normal adult patterns and mediate circadian responses to light largely independent of light experience during development. The data identify a categorical difference in the requirement for light input during postnatal development between circadian and non-circadian visual systems

    Identification of an L-Phenylalanine Binding Site Enhancing The Cooperative Responses of The Calcium Sensing Receptor to Calcium

    Get PDF
    Functional positive cooperative activation of the extracellular calcium ([Ca2+]o)-sensing receptor (CaSR), a member of the family C G protein-coupled receptors (GPCRs), by [Ca2+]o or amino acids elicits intracellular Ca2+ ([Ca2+]i) oscillations. Here, we report the central role of predicted Ca2+-binding Site 1 within the hinge region of the extracellular domain (ECD) of CaSR and its interaction with other Ca2+-binding sites within the ECD in tuning functional positive homotropic cooperativity caused by changes in [Ca2+]o. Next, we identify an adjacent L-Phe-binding pocket that is responsible for positive heterotropic cooperativity between [Ca2+]o and L- Phe in eliciting CaSR-mediated [Ca2+]i oscillations. The hetero-communication between Ca2+ and an amino acid globally enhances functional positive homotropic cooperative activation of CaSR in response to [Ca2+]o signaling by positively impacting multiple [Ca2+]o-binding sites within the ECD. Elucidation of the underlying mechanism provides important insights into the longstanding question of how the receptor transduces signals initiated by [Ca2+]o and amino acids into intracellular signaling events

    HER2 Targeted Molecular MR Imaging Using a De Novo Designed Protein Contrast Agent

    Get PDF
    The application of magnetic resonance imaging (MRI) to non-invasively assess disease biomarkers has been hampered by the lack of desired contrast agents with high relaxivity, targeting capability, and optimized pharmacokinetics. We have developed a novel MR imaging probe targeting to HER2, a biomarker for various cancer types and a drug target for anti-cancer therapies. This multimodal HER20targeted MR imaging probe integrates a de novo designed protein contrast agent with a high affinity HER2 affibody and a near IR fluorescent dye. Our probe can differentially monitor tumors with different expression levels of HER2 in both human cell lines and xenograft mice models. In addition to its 100-fold higher dose efficiency compared to clinically approved non-targeting contrast agent DTPA, our developed agent also exhibits advantages in crossing the endothelial boundary, tissue distribution, and tumor tissue retention over reported contrast agents as demonstrated by even distribution of the imaging probe across the entire tumor mass. This contrast agent will provide a powerful tool for quantitative assessment of molecular markers, and improved resolution for diagnosis, prognosis and drug discovery

    Nitric Oxide-Releasing Nanoparticles Prevent Propionibacterium acnes-Induced Inflammation by Both Clearing the Organism and Inhibiting Microbial Stimulation of the Innate Immune Response.

    Get PDF
    Propionibacterium acnes induction of IL-1 cytokines through the NLRP3 (NLR, nucleotide oligomerization domain-like receptor) inflammasome was recently highlighted as a dominant etiological factor for acne vulgaris. Therefore, therapeutics targeting both the stimulus and the cascade would be ideal. Nitric oxide (NO), a potent biological messenger, has documented broad-spectrum antimicrobial and immunomodulatory properties. To harness these characteristics to target acne, we used an established nanotechnology capable of generating/releasing NO over time (NO-np). P. acnes was found to be highly sensitive to all concentrations of NO-np tested, although human keratinocyte, monocyte, and embryonic zebra fish assays revealed no cytotoxicity. NO-np significantly suppressed IL-1Ξ², tumor necrosis factor-Ξ± (TNF-Ξ±), IL-8, and IL-6 from human monocytes, and IL-8 and IL-6 from human keratinocytes, respectively. Importantly, silencing of NLRP3 expression by small interfering RNA did not limit NO-np inhibition of IL-1 Ξ² secretion from monocytes, and neither TNF-Ξ± nor IL-6 secretion, nor inhibition by NO-np was found to be dependent on this pathway. The observed mechanism by which NO-np impacts IL-1Ξ² secretion was through inhibition of caspase-1 and IL-1Ξ² gene expression. Together, these data suggest that NO-np can effectively prevent P. acnes-induced inflammation by both clearing the organism and inhibiting microbial stimulation of the innate immune response

    Inverse tuning of metal binding affinity and protein stability by altering charged coordination residues in designed calcium binding proteins

    Get PDF
    Ca2+ binding proteins are essential for regulating the role of Ca2+ in cell signaling and maintaining Ca2+ homeostasis. Negatively charged residues such as Asp and Glu are often found in Ca2+ binding proteins and are known to influence Ca2+ binding affinity and protein stability. In this paper, we report a systematic investigation of the role of local charge number and type of coordination residues in Ca2+ binding and protein stability using de novo designed Ca2+ binding proteins. The approach of de novo design was chosen to avoid the complications of cooperative binding and Ca2+-induced conformational change associated with natural proteins. We show that when the number of negatively charged coordination residues increased from 2 to 5 in a relatively restricted Ca2+-binding site, Ca2+ binding affinities increased by more than 3 orders of magnitude and metal selectivity for trivalent Ln3+ over divalent Ca2+ increased by more than 100-fold. Additionally, the thermal transition temperatures of the apo forms of the designed proteins decreased due to charge repulsion at the Ca2+ binding pocket. The thermal stability of the proteins was regained upon Ca2+ and Ln3+ binding to the designed Ca2+ binding pocket. We therefore observe a striking tradeoff between Ca2+/Ln3+ affinity and protein stability when the net charge of the coordination residues is varied. Our study has strong implications for understanding and predicting Ca2+-conferred thermal stabilization of natural Ca2+ binding proteins as well as for designing novel metalloproteins with tunable Ca2+ and Ln3+ binding affinity and selectivity

    Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway

    Get PDF
    Optogenetics provides a means to dissect the organization and function of neural circuits. Optogenetics also offers the translational promise of restoring sensation, enabling movement or supplanting abnormal activity patterns in pathological brain circuits. However, the inherent sluggishness of evoked photocurrents in conventional channelrhodopsins has hampered the development of optoprostheses that adequately mimic the rate and timing of natural spike patterning. Here, we explore the feasibility and limitations of a central auditory optoprosthesis by photoactivating mouse auditory midbrain neurons that either express channelrhodopsin-2 (ChR2) or Chronos, a channelrhodopsin with ultra-fast channel kinetics. Chronos-mediated spike fidelity surpassed ChR2 and natural acoustic stimulation to support a superior code for the detection and discrimination of rapid pulse trains. Interestingly, this midbrain coding advantage did not translate to a perceptual advantage, as behavioral detection of midbrain activation was equivalent with both opsins. Auditory cortex recordings revealed that the precisely synchronized midbrain responses had been converted to a simplified rate code that was indistinguishable between opsins and less robust overall than acoustic stimulation. These findings demonstrate the temporal coding benefits that can be realized with next-generation channelrhodopsins, but also highlight the challenge of inducing variegated patterns of forebrain spiking activity that support adaptive perception and behavior

    Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans.

    Get PDF
    Several strands of evidence question the dogma that human mitochondrial DNA (mtDNA) is inherited exclusively down the maternal line, most recently in three families where several individuals harbored a 'heteroplasmic haplotype' consistent with biparental transmission. Here we report a similar genetic signature in 7 of 11,035 trios, with allelic fractions of 5-25%, implying biparental inheritance of mtDNA in 0.06% of offspring. However, analysing the nuclear whole genome sequence, we observe likely large rare or unique nuclear-mitochondrial DNA segments (mega-NUMTs) transmitted from the father in all 7 families. Independently detecting mega-NUMTs in 0.13% of fathers, we see autosomal transmission of the haplotype. Finally, we show the haplotype allele fraction can be explained by complex concatenated mtDNA-derived sequences rearranged within the nuclear genome. We conclude that rare cryptic mega-NUMTs can resemble paternally mtDNA heteroplasmy, but find no evidence of paternal transmission of mtDNA in humans
    • …
    corecore