23 research outputs found

    Prevalence and Prognostic Significance of HPV in Laryngeal Squamous Cell Carcinoma in Northeast China

    Get PDF
    Background/Aims: Human papillomavirus (HPV) is an etiological risk factor for a subset of head and neck squamous cell carcinomas. HPV has been proven to be a powerful prognostic biomarker for oropharyngeal cancer, but its role in the larynx has not been explored in depth. Here, we sought to evaluate the prevalence and genotype distribution of HPV in patients with laryngeal squamous cell carcinoma (LSCC) in northeast China. Methods: HPV DNA in specimens from 211 patients diagnosed with LSCC was analyzed by the polymerase chain reaction and in situ hybridization, and p16 overexpression was evaluated by immunohistochemistry. p16 expression was scored positive if strong and diffuse nuclear and cytoplasmic staining was present in > 75% of tumor cells. Results: In this study, infection with HPV and p16 expression were not absolutely consistent. Among all patients, 132 (62.6%) were positive for HPV DNA (HPV+), while 23 (10.9%) were inconsistent for HPV and p16. Multivariate analysis indicated that HPV, but not p16, is an independent prognostic factor for overall survival in LSCC. Overall survival was significantly improved in HPV+ LSCC patients compared with the HPV-negative group (hazard ratio, 0.395; 95% confidence interval, 0.185–0.843; p = 0.016). Among the 132 HPV+ patients, 28 (21.2%) were HPV-16 single infection. Conclusion: This study indicates that HPV DNA is a more reliable surrogate marker than p16 for the prediction of survival in patients with LSCC

    Horseradish Peroxidase/Poly-o- phen ylenediamine Mem brane Electrode:Preparation and Properties

    No full text
    辣根过氧化物酶(HRP)/聚邻苯二胺(PPD)膜电极由pH7.0磷酸盐缓冲溶液介质中邻苯二胺在玻碳电极上的电聚合而制得。讨论了HRP电化学固定化的过程。所得酶电极呈现生物催化活性,可在没有电子传递体存在的情况下催化H_O_2还原。该反应发生在聚邻苯二胺氧化还原的电位区,聚合物参与了酶的电子转移过程。分析了旋转HRP/PPD电极上酶反应的动力学,讨论了动力学常数的影响因素。A horseradish peroxidase(HRP)/poly-o-phenylenediamine(PPD)membraneelectrede was prepared by electropolymerization of o-phenylenediamine on glassy carbon in pH 7.0phosphate buffer,the process of the enzyme immobilization was studied,The enzyme electredeobtained exhibits the activity to catalyze the electrored uction of hydrogen peroxide in the absence ofany electron transfer mediator.The red uction reaction occurs in the potential range of PPD redoxprocess,it was believed that the polymer participates in electron transfer of the enzyme.The enzymereaction kinetics at rotating H RP/PPD electrede was analysed,and the factors influencing kineticparameters were discussed.作者联系地址:厦门大学化学系,固体表面物理化学国家重点实验室Author's Address: Dept.of Chem., State Key Lab. For Phys. Chem.of the Solid Surfaces, Xiamen Univ., Xiamen,36100

    Poly(diallyldimethylammonium-MoS4) based amorphous molybdenum sulphide composite for selectively mercury uptake from wastewater across a large pH region

    No full text
    Amorphous molybdenum sulphide materials are attracting more attention in heterogeneous catalysis, gas adsorption and water remediation fields. Herein, a new type of amorphous molybdenum sulphide composite (poly(diallyldimethylammonium-MoS), shorten as PDADMA-MoS) was synthesized via a facile precipitation reaction. Metal adsorption tests of prepared PDADMA-MoS composite shows that Hg and Pb concentrations in solution can decrease from 10 ppm t

    Changes in water status and microstructure reveal the mechanisms by which tempering affects drying characteristics and quality attributes of medicinal chrysanthemums

    No full text
    To elucidate the mechanism behind the heterogeneity in the water distribution during the drying process of medicinal chrysanthemum (Imperial chrysanthemum), and thereby optimize the drying process, this study introduced an innovative approach by incorporating tempering into the drying process and evaluated the effects of hot air drying (HAD), infrared-assisted hot air drying (IR-HAD), and tempering-incorporated IR-HAD (TD+IR-HAD) on the water status, microstructure, and phytochemicals of dried chrysanthemums. Results showed a significant difference in the rate of dehydration between the central and marginal parts of chrysanthemums. The highest difference in moisture content value (1.34 g water/g dry matter) was observed between these two parts for samples subjected to 2.5 h of IR-HAD drying. Consequently, the sample subjected to 2.5 h of IR-HAD drying was selected for tempering. After the optimal tempering treatment (12 h), the samples were subjected to an additional 0.5 h of IR-HAD drying. This incorporated drying method (TD+IR-HAD) effectively reduced the drying time and energy consumption. Transverse relaxation curves and microstructural observations further confirmed that these reductions were related to the enhancement of water mobility and the formation of microchannels during tempering. As a result, chrysanthemums dried using TD+IR-HAD showed increased contents of chlorogenic acid, luteolin, total phenolic, total flavonoid, antioxidant capacity, and the number of volatile compounds compared to HAD and IR-HAD. Overall, these results highlight the potential of TD+IR-HAD as a promising drying technique for enhancing the value and applications of medicinal chrysanthemums in industrial settings

    Jedi Spinel from Man Sin, Myanmar: Color, Inclusion, and Chemical Features

    No full text
    In the present study, we collected and investigated spinels from the Man Sin deposit in Myanmar using standard gemological testing, microscopic observation, EDXRF, and Raman spectrometry. The color observation was performed under various lighting conditions to show color differences. A very high Cr/Fe ratio is linked with exceptionally strong red fluorescence. Microscopic observation and Raman spectroscopy identified mineral inclusions of colorless phlogopite, molybdenite, hauerite, native sulfur, and calcite. Man Sin spinels are typical Fe– and Zn–poor spinels. Binary and ternary diagrams were used to discriminate each deposit (i.e., Man Sin, Mogok, and Namya in Myanmar) with high reliability. Jedi spinel fever in the Asian market, due to their unique neon color appearance and exceptionally strong fluorescence, is also discussed

    Identification of the occurrence of minor elements in the structure of diatomaceous opal using FIB and TEM-EDS

    No full text
    The occurrence of minor elements in the structure of biogenic diatomaceous opal-A is an important issue because it is closely related to biogeochemical processes driven by the precipitation, sedimentation, and storage of diatoms, as well as to the properties and applications of diatomite, which is the sedimentary rock composed of diatomaceous opal-A. However, to date, there is no direct microscopic evidence for the existence of minor elements, such as Al, Fe, and Mg, in the structure of diatomaceous opal-A, because such evidence requires observation of the internal structure of frustules to exclude the disturbance of impurity minerals, which is technically challenging using conventional techniques. In this work, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS) mapping analysis were performed on diatomaceous opal-A from three typical diatomite specimens that were pretreated using focused ion beam (FIB) thinning. This technique produces a slice of a diatom frustule for direct TEM observation of the internal structure of the diatomaceous opal-A. The results of this work clearly indicate that minor elements, such as Al, Fe, Ca, and Mg, conclusively exist within the siliceous framework of diatomaceous opal-A. The contents of these minor elements are at atomic ratio levels of 1 (minor element)/10000 (Si) - 1/100, regardless of the genus of the diatoms. The occurrence of minor elements in the internal structure is likely through biological uptake during biosynthesis by living diatoms. Moreover, surface coatings composed of aluminosilicates on diatom frustules are common, and the contents of elements such as Al and Fe are tens or hundreds of times higher in the coatings than in the internal siliceous structure of diatomaceous opal-A. The discovery of the incorporation of the above-mentioned minor elements in the diatomaceous opal-A structure, both in the internal Si-O framework and on the surface, updates the knowledge about the properties of diatomite

    Bladder cancer intrinsic LRFN2 drives anticancer immunotherapy resistance by attenuating CD8+ T cell infiltration and functional transition

    No full text
    Background Immune checkpoint inhibitor (ICI) therapy improves the survival of patients with advanced bladder cancer (BLCA); however, its overall effectiveness is limited, and many patients still develop immunotherapy resistance. The leucine-rich repeat and fibronectin type-III domain-containing protein (LRFN) family has previously been implicated in regulating brain dysfunction; however, the mechanisms underlying the effect of LRFN2 on the tumor microenvironment (TME) and immunotherapy remain unclear.Methods Here we combined bulk RNA sequencing, single-cell RNA sequencing, ProcartaPlex multiple immunoassays, functional experiments, and TissueFAXS panoramic tissue quantification assays to demonstrate that LRFN2 shapes a non-inflammatory TME in BLCA.Results First, comprehensive multiomics analysis identified LRFN2 as a novel immunosuppressive target specific to BLCA. We found that tumor-intrinsic LRFN2 inhibited the recruitment and functional transition of CD8+ T cells by reducing the secretion of pro-inflammatory cytokines and chemokines, and this mechanism was verified in vitro and in vivo. LRFN2 restrained antitumor immunity by inhibiting the infiltration, proliferation, and differentiation of CD8+ T cells in vitro. Furthermore, a spatial exclusivity relationship was observed between LRFN2+ tumor cells and CD8+ T cells and cell markers programmed cell death-1 (PD-1) and T cell factor 1 (TCF-1). Preclinically, LRFN2 knockdown significantly enhanced the efficacy of ICI therapy. Clinically, LRFN2 can predict immunotherapy responses in real-world and public immunotherapy cohorts. Our results reveal a new role for LRFN2 in tumor immune evasion by regulating chemokine secretion and inhibiting CD8+ T-cell recruitment and functional transition.Conclusions Thus, LRFN2 represents a new target that can be combined with ICIs to provide a potential treatment option for BLCA

    Biomimetic honeycomb Zn anode enabled multi-field regulation toward highly stable flexible Zn-ion batteries

    No full text
    Flexible Zn-ion batteries (ZIBs) emerge as a promising entrant for flexible and safe energy systems in the post-Li era, while the instability of Zn anode including inferior flexibility, uncontrollable plating, and dendrite growth remains a challenge. Naturally inspired, a topology-optimized biomimetic honeycomb Zn (BH-Zn) anode through mechanical-electrochemical processing is demonstrated. Numerical simulations and experimental observations reveal the BH-Zn engenders smooth current–stress–thermal field distributions, concurrently realizing the multi-field regulation effect and boosted stability. After in situ alloying, the BH-Zn enables half-diminished voltage polarization, superior electrochemical stability of 2000 h cycling, and thermal stability even at 30 mA cm−2. Moreover, the assembled ZIBs manifest over 20 times enhanced capacity retention and are integrated as a self-powered wearable system for real-time health monitoring. This strategy can be extended to customizable metal anodes and promises to be applied in stable flexible batteries.The authors acknowledge the financial support from the National Natural Science Foundation of China (grant nos. 52175534, U22A20193), the Natural Science Foundation of Hunan Province, China (grant no. 2022JJ30154), the Science and Technology Innovation Program of Hunan Province (grant no. 2021RC3052), the Fundamental Research Funds for the Central Universities (grant no. 531118010016), and the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (grant no. 72175008). F.C. acknowledges the financial support from the National Natural Science Foundation of China (grant no. 51975204) and the Natural Science Foundation of Hunan Province, China (grant no. 2021JJ30103). H.L. is grateful for the funding of China Scholarship Council (CSC)
    corecore