89 research outputs found

    County-Scale Spatial Distribution of Soil Enzyme Activities and Enzyme Activity Indices in Agricultural Land: Implications for Soil Quality Assessment

    Get PDF
    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km2) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality

    Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes

    Get PDF
    Soil priming is a microbial-driven process, which determines key soil–climate feedbacks in response to fresh carbon inputs. Despite its importance, the microbial traits behind this process are largely undetermined. Knowledge of the role of these traits is integral to advance our understanding of how soil microbes regulate carbon (C) emissions in forests, which support the largest soil carbon stocks globally. Using metagenomic sequencing and C-glucose, we provide unprecedented evidence that microbial traits explain a unique portion of the variation in soil priming across forest biomes from tropical to cold temperature regions. We show that microbial functional profiles associated with the degradation of labile C, especially rapid simple sugar metabolism, drive soil priming in different forests. Genes involved in the degradation of lignin and aromatic compounds were negatively associated with priming effects in temperate forests, whereas the highest level of soil priming was associated with β-glucosidase genes in tropical/subtropical forests. Moreover, we reconstructed, for the first time, 42 whole bacterial genomes associated with the soil priming effect and found that these organisms support important gene machinery involved in priming effect. Collectively, our work demonstrates the importance of microbial traits to explain soil priming across forest biomes and suggests that rapid carbon metabolism is responsible for priming effects in forests. This knowledge is important because it advances our understanding on the microbial mechanisms mediating soil–climate feedbacks at a continental scale.This work were financially supported by the National Natural Science Foundation of China (41907031), the Chinese Academy of Sciences “Light of West China” Program for Introduced Talent in the West, the National Natural Science Foundation of China (31570440, 31270484), the Key International Scientific and Technological Cooperation and Exchange Project of Shaanxi Province, China (2020KWZ-010), the 2021 First Funds for Central Government to Guide Local Science and Technology Development in Qinghai Province (2021ZY002), the i-LINK +2018 (LINKA20069) from CSIC, and a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-025483-I

    Functional Analysis of a Putative Type III Secretion System in Stress Adaption by Mesorhizobium alhagi CCNWXJ12-2T

    No full text
    Mesorhizobium alhagi CCNWXJ12-2T, isolated from root nodules of the desert plant Alhagi sparsifolia, contains two type III secretion systems (T3SSs). T3SSs are specialized machinery with wide distribution in bacteria that inject effector proteins into target cells. Our previous study showed that the expression of M. alhagi T3SS1 is upregulated in high-salt conditions. Here, phylogenetic analysis of T3SS1 using the core protein RhcU suggested that T3SS1 belongs to the α-Rhc II subgroup of the Rhc T3SS family. To elaborate the function of M. alhagi CCNWXJ12-2T T3SS1 in stress adaption, two T3SS1 mutants (ΔrhcQ and ΔMA29250) were constructed and analyzed. β-galactosidase transcriptional fusion assays showed that activity of the promoter of T3SS1 was induced by salts. Mutant ΔrhcQ was more sensitive to NaCl and LiCl than the wild-type, but ΔMA29250 was not. Both mutants were more sensitive to KCl than the wild-type. The intracellular Na+ concentration in ΔrhcQ in high-NaCl conditions (0.4 M) increased by 37% compared to that of the wild-type strain, while the Na+ concentration in ΔMA29250 increased by 13%. The K+ concentration in both mutants increased by 16% compared to the wild-type in high-KCl conditions (0.3 M). Strain ΔrhcQ showed decreased survival compared to the wild-type after treatment with H2O2, while the survival rate of ΔMA29250 was almost the same as that of the wild-type. Antioxidant enzyme activities in ΔrhcQ were lower than those in the wild-type strain, but this was not the case for ΔMA29250. Our data elucidate the beneficial effects of T3SS1 in the adaption of M. alhagi CCNWXJ12-2T to stress

    A new clade of Mesorhizobium nodulating Alhagi sparsifolia

    No full text
    International audienceWe isolated 33 nodule bacteria from the legume Alhagi sparsifolia growing in the desert of northwest China. They fell into three groups by restriction analysis of their rrs (small subunit ribosomal RNA) genes, and these, together with dnaK and dnaJ genes, were sequenced from representative isolates to assess their taxonomic position by phylogenetic analysis. The bacteria in each group belonged to different lineages that might represent three different new Mesorhizobium species, two of which form a novel clade very distinct from other species in the genus. Most A. sparsifolia symbionts harboured closely related nodA and nodC genes forming new lineages. The presence of these closely related symbiosis genes in various genomic backgrounds and the incongruence observed between the different gene phylogenies indicate a history of horizontal gene transfer of symbiosis genes between the A. sparsifolia symbionts

    Exploring root system architecture and anatomical variability in alfalfa (Medicago sativa L.) seedlings

    No full text
    Abstract Background The growth of alfalfa (Medicago sativa L.) is significantly hampered by drought and nutrient deficiencies. The identification of root architectural and anatomical characteristics holds paramount importance for the development of alfalfa genotypes with enhanced adaptation to adverse environmental conditions. In this study, we employed a visual rhizobox system to investigate the variability in root system architecture (including root depth, root length, root tips number, etc.), anatomical features (such as cortical traits, total stele area, number and area of vessel, etc.), as well as nitrogen and phosphorus uptake across 53 alfalfa genotypes during the seedling stage. Results Out of the 42 traits measured, 21 root traits, along with nitrogen (N) and phosphorus (P) uptake, displayed higher coefficients of variation (CVs ≥ 0.25) among the tested genotypes. Local root morphological and anatomical traits exhibited more significant variation than global root traits. Twenty-three traits with CVs ≥ 0.25 constituted to six principal components (eigenvalues > 1), collectively accounting for 88.0% of the overall genotypic variation. Traits such as total root length, number of root tips, maximal root depth, and others exhibited positive correlations with shoot dry mass and root dry mass. Additionally, total stele area and xylem vessel area showed positive correlations with N and P uptake. Conclusions These root traits, which have demonstrated associations with biomass and nutrient uptake, may be considered for the breeding of alfalfa genotypes that possess efficient resource absorption and increased adaptability to abiotic stress, following validation during the entire growth period in the field

    rDNA- and rRNA-derived communities present divergent assemblage patterns and functional traits throughout full-scale landfill leachate treatment process trains

    No full text
    Understanding the influences of microbial interactions and niche heterogeneities on microbial communities and functional traits is critical for determining its engineering and ecological significance. However, little is known about microbial community assemblage and functional gene expression throughout full-scale landfill leachate treatment plants. Here, we applied a combination of 16S rRNA and rDNA amplicon sequencing, shotgun metagenomic, and qPCR approaches to unveil the ecological associations between distinct communities, functional gene expression and nitrogen cycling processes. By comparing the rDNA and rRNA-derived communities, the rRNA/rDNA ratios suggested that 57.2% of rare taxa were active, and their abundance decreased as increasing of potential activities. In particular, rDNA- and rRNA-based communities exhibited divergent assemblage patterns, and stronger intra-associations among core taxa in the rRNA-based communities than in rDNA-based communities. Furthermore, results regarding both bacterial assemblage and functional traits indicated that the habitat filtering and niche differentiation (treatment units) exerted selection on microbial communities based on functional traits, particular for key ecological functions related to nitrogen cycling. Collectively, our findings provide insights into structure-function associations at the local level and shed light on ecological rules guiding rDNA- and rRNA-based community assembly in landfill leachate treatment systems

    Genes conferring copper resistance in <i>Sinorhizobium meliloti</i> CCNWSX0020 also promote growth of <i>Medicago lupulina</i> in copper contaminated soil

    No full text
    Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed both copper resistance and growth promotion of leguminous plants in copper-contaminated soil. Nevertheless, the genetic and biochemical mechanisms responsible for copper resistance in S. meliloti CCNWSX0020 remained uncharacterized. To investigate genes involved in copper resistance, an S. meliloti CCNWSX0020 Tn5 insertion library of 14,000 mutants was created. Five copper-sensitive mutants, named SXa-1, SXa-2, SXc-1, SXc-2, and SXn, were isolated, and the disrupted regions involved were identified by inverse PCR and subsequent sequencing. Both SXa-1 and SXa-2 carried a transposon insertion in lpxXL (SM0020_18047), encoding the LpxXL C-28 acyltransferase; SXc-1 and SXc-2 carried a transposon insertion in merR (SM0020_29390), encoding the regulatory activator; SXn contained a transposon insertion in omp (SM0020_18792), encoding a hypothetical outer membrane protein. The results of reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that SM0020_05862, encoding an unusual P-type ATPase, was regulated by the MerR protein. Analysis of the genome sequence showed that this P-type ATPase did not contain an N-terminal metal-binding domain or a CPC motif but rather TPCP compared with CopA from Escherichia coli. Pot experiments were carried out to determine whether growth and copper accumulation of the host plant M. lupulina were affected in the presence of the wild type or the different mutants. Soil samples were subjected to three levels of copper contamination, namely, the uncontaminated control and 47.36 and 142.08 mg/kg, and three replicates were conducted for each treatment. The results showed that the wild-type S. meliloti CCNWSX0020 enabled the host plant to grow better and accumulate copper ions. The plant dry weight and copper content of M. lupulina inoculated with the 5 copper-sensitive mutants significantly decreased in the presence of CuSO(4)

    Profiling of differentially expressed genes in roots of Robinia pseudoacacia during nodule development using suppressive subtractive hybridization.

    Get PDF
    BACKGROUND: Legume-rhizobium symbiosis is a complex process that is regulated in the host plant cell through gene expression network. Many nodulin genes that are upregulated during different stages of nodulation have been identified in leguminous herbs. However, no nodulin genes in woody legume trees, such as black locust (Robinia pseudoacacia), have yet been reported. METHODOLOGY/PRINCIPAL FINDINGS: To identify the nodulin genes involved in R. pseudoacacia-Mesorhizobium amorphae CCNWGS0123 symbiosis, a suppressive subtractive hybridization approach was applied to reveal profiling of differentially expressed genes and two subtracted cDNA libraries each containing 600 clones were constructed. Then, 114 unigenes were identified from forward SSH library by differential screening and the putative functions of these translational products were classified into 13 categories. With a particular interest in regulatory genes, twenty-one upregulated genes encoding potential regulatory proteins were selected based on the result of reverse transcription-polymerase chain reaction (RT-PCR) analysis. They included nine putative transcription genes, eight putative post-translational regulator genes and four membrane protein genes. The expression patterns of these genes were further analyzed by quantitative RT-PCR at different stages of nodule development. CONCLUSIONS: The data presented here offer the first insights into the molecular foundation underlying R. pseudoacacia-M. amorphae symbiosis. A number of regulatory genes screened in the present study revealed a high level of regulatory complexity (transcriptional, post-transcriptional, translational and post-translational) that is likely essential to develop symbiosis. In addition, the possible roles of these genes in black locust nodulation are discussed
    • …
    corecore