10 research outputs found
Concentration, temperature, and density in a hydrogen-air flame by excimer-induced Raman scattering
Single-pulse, vibrational Raman scattering (VRS) is an attractive laser diagnostic for the study of supersonic hydrogen-air combustion. The VRS technique gives a complete thermodynamic description of the gas mixture at a point in the reacting flow. Single-pulse, vibrational Raman scattering can simultaneously provide independent measurements of density, temperature, and concentration of each major species (H2, H2O, O2 and N2) in a hydrogen/air turbulent combustor. Also the pressure can be calculated using the ideal gas law. However, single-pulse VRS systems in current use for measurement of turbulent combustion have a number of shortcomings when applied to supersonic flows: (1) slow repetition rate (1 to 5 Hz), (2) poor spatial resolution (0.5x0.3x0.3 cu mm), and (3) marginal time resolution. Most of these shortcomings are due to the use of visible wavelength flash-lamp pumped dye lasers. The advent of UV excimer laser allows the possibility of dramatic improvements in the single-pulse, vibrational Raman scattering. The excimer based VRS probe will greatly improve repetition rate (100 to 500 Hz), spatial resolution (0.1x0.1x0.1 cu mm) and time resolution (30ns). These improvements result from the lower divergence of the UV excimer, higher repetition rate, and the increased Raman cross-sections (15 to 20 times higher) at ultra-violet (UV) wavelengths. With this increased capability, single-pulse vibrational Raman scattering promises to be an ideal non-intrusive probe for the study of hypersonic propulsion flows
Hydrocarbon-Fueled Rocket Plume Measurement Using Polarized UV Raman Spectroscopy
The influence of pressure upon the signal strength and polarization properties of UV Raman signals has been investigated experimentally up to pressures of 165 psia (11 atm). No significant influence of pressure upon the Raman scattering cross section or depolarization ratio of the N2 Raman signal was found. The Raman scattering signal varied linearly with pressure for the 300 K N2 samples examined, thus showing no enhancement of cross section with increasing pressure. However at the highest pressures associated with rocket engine combustion, there could be an increase in the Raman scattering cross section, based upon others' previous work at higher pressures than those examined in this work. The influence of pressure upon thick fused silica windows, used in the NASA Modular Combustion Test Article, was also investigated. No change in the transmission characteristics of the windows occurred as the pressure difference across the windows increased from 0 psig up to 150 psig. A calibration was performed on the UV Raman system at Vanderbilt University, which is similar to the one at the NASA-Marshall Test Stand 115. The results of this calibration are described in the form of temperature-dependent functions, f(T)'s, that account for the increase in Raman scattering cross section with an increase in temperature and also account for the reduction in collected Raman signal if wavelength integration does not occur across the entire wavelength range of the Raman signal. These functions generally vary only by approximately 10% across their respective temperature ranges, except for the case Of CO2, where there is a factor of three difference in its f(T) from 300 K to 2500 K. However this trend for CO2 is consistent with the experimental work of others, and is expected based on the low characteristic vibrational temperature Of CO2. A time-averaged temperature measurement technique has been developed, using the same equipment as for the work mentioned above, that is based upon high-spectral resolution UV Raman scattering. This technique can provide temperature measurements for flows where pressure cannot be measured
Raman Spectroscopy for Instantaneous Multipoint, Multispecies Gas Concentration and Temperature Measurements in Rocket Engine Propellant Injector Flows
Propellant injector development at MSFC includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellant mass transported to Mars for future manned Mars missions. The present technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented
Unseeded Scalar Velocity Measurements for Propulsion Flows
Unseeded molecular tagging methods based on single-photon processes that produce long tag lines (>50 mm) have been recently developed and demonstrated by the Combustion Laser Diagnostics Group (Mechanical Engineering Department) at Vanderbilt University [1,2]. In Ozone Tagging Velocimetry (OTV) a line of ozone (O3) is produced by a single photon from a pulsed narrowband argon fluoride (ArF) excimer laser operating at - 193 nm. After a known time delay, t, the position of the displaced (convected in the flow field) O3 tag line is revealed by photodissociation of O3 and subsequent fluorescence of O2, caused by a pulsed laser sheet from a krypton fluoride (KrF) excimer laser operating at - 248 nm. Intensified CCD camera images of the fluorescence are taken from the initial and final tag line locations thus providing unobtrusive means of establishing a velocity profile in the interrogated flow field. The O3 lines are "written" and subsequently "read" by the following reactions
Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy
Optically accessible, high pressure, hot fire test articles are available at NASA Marshall for use in development of advanced rocket engine propellant injectors. Single laser-pulse ultraviolet (UV) Raman spectroscopy has been used in the past in these devices for analysis of high pressure H2- and CH4-fueled combustion, but relies on an independent pressure measurement in order to provide temperature information. A variation of UV Raman (High Resolution Hydrogen Raman Spectroscopy) is under development and will allow temperature measurement without the need for an independent pressure measurement, useful for flows where local pressure may not be accurately known. The technique involves the use of a spectrometer with good spectral resolution, requiring a small entrance slit for the spectrometer. The H2 Raman spectrum, when created by a narrow linewidth laser source and obtained from a good spectral resolution spectrograph, has a spectral shape related to temperature. By best-fit matching an experimental spectrum to theoretical spectra at various temperatures, a temperature measurement is obtained. The spectral model accounts for collisional narrowing, collisional broadening, Doppler broadening, and collisional line shifting of each Raman line making up the H2 Stokes vibrational Q-branch spectrum. At pressures from atmospheric up to those associated with advanced preburner components (5500 psia), collisional broadening though present does not cause significant overlap of the Raman lines, allowing high resolution H2 Raman to be used for temperature measurements in plumes and in high pressure test articles. Experimental demonstrations of the technique are performed for rich H2-air flames at atmospheric pressure and for high pressure, 300 K H2-He mixtures. Spectrometer imaging quality is identified as being critical for successful implementation of technique
Raman Gas Species Measurements in Hydrocarbon-Fueled Rocket Engine Injector Flows
Propellent injector development at MSFC (Marshall Space Flight Center) includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellent mass transported to Mars for future manned Mars missions. The present technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented
Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry
Two complementary unseeded molecular flow tagging techniques for gas-flow velocity field measurement at low and high temperature are demonstrated. Ozone tagging velocimetry (OTV) is applicable to low-temperature air flows whereas hydroxyl tagging velocimetry (HTV) is amenable to use in high-temperature reacting flows containing water vapour. In OTV, a grid of ozone lines is created by photodissociation of O_2 by a narrowband 193 nm ArF excimer laser. After a fixed time delay, the ozone grid is imaged with a narrowband KrF laser sheet that photodissociates the ozone and produces vibrationally excited O_2 that is subsequently made to fluoresce by the same KrF laser light sheet via the O_2 transition B^3Σ_u^-(v'=0,2) ← X^3Σ_g^-(v"=6,7). In HTV, a molecular grid of hydroxyl (OH) radicals is written into a flame by single-photon photodissociation of vibrationally excited H_2O by a 193 nm ArF excimer laser. After displacement, the OH tag line position is revealed through fluorescence caused by OH A^2Σ^+_-X^2Π (3←0) excitation using a 248 nm tunable KrF excimer laser. OTV and HTV use the same lasers and can simultaneously measure velocities in low and high temperature regions. Instantaneous flow-tagging grids are measured in air flows and a flame. The velocity field is extracted from OTV images in an air jet using the image correlation velocimetry (ICV) method