473 research outputs found
An Optical Approach to the Dynamical Casimir Effect
We recently proposed a new approach to analyze the parametric resonance in a
vibrating cavity based on the analysis of classical optical paths. This
approach is used to examine various models of cavities with moving walls. We
prove that our method is useful to extract easily basic physical outcome.Comment: 9 page
Nambu-Goto string action with Gauss-Bonnet term
We examine the relativistic Nambu-Goto model with Gauss-Bonnet boundary term
added to the action integral. The system is analysed using an invariant
representation of dynamical string degrees of freedom by complex Liouville
fields. The solutions of classical equations of motion for open strings are
described.Comment: 9 pages, late
Meson bound states in multiflavour massive Schwinger model
The problem of meson bound states with massive fermions in two
dimensional quantum electrodynamics is discussed. We speculate about the
spectrum of the lightest particles by means of the effective semiclassical
description. In particular, the systems of fundamental fermions with
and flavour symmetries broken by massive terms are investigated.Comment: 16 page
Exact closed form analytical solutions for vibrating cavities
For one-dimensional vibrating cavity systems appearing in the standard
illustration of the dynamical Casimir effect, we propose an approach to the
construction of exact closed-form solutions. As new results, we obtain
solutions that are given for arbitrary frequencies, amplitudes and time
regions. In a broad range of parameters, a vibrating cavity model exhibits the
general property of exponential instability. Marginal behavior of the system
manifests in a power-like growth of radiated energy.Comment: 17 pages, 7 figure
Open strings with topologically inspired boundary conditions
We consider an open string described by an action of the Dirac-Nambu-Goto
type with topological corrections which affect the boundary conditions but not
the equations of motion. The most general addition of this kind is a sum of the
Gauss-Bonnet action and the first Chern number (when the background spacetime
dimension is four) of the normal bundle to the string worldsheet. We examine
the modification introduced by such terms in the boundary conditions at the
ends of the string.Comment: 12 pages, late
Dynamical Casimir Effect for a Swinging Cavity
The resonant scalar particle generation for a swinging cavity resonator in
the Casimir vacuum is examined. It is shown that the number of particles grows
exponentially when the cavity rotates at some specific external frequency.Comment: to appear in J. Phys. A: Math. Theo
Numerical approach to the dynamical Casimir effect
The dynamical Casimir effect for a massless scalar field in 1+1-dimensions is
studied numerically by solving a system of coupled first-order differential
equations. The number of scalar particles created from vacuum is given by the
solutions to this system which can be found by means of standard numerics. The
formalism already used in a former work is derived in detail and is applied to
resonant as well as off-resonant cavity oscillations.Comment: 15 pages, 4 figures, accepted for publication in J. Phys. A (special
issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005
Planetoid strings : solutions and perturbations
A novel ansatz for solving the string equations of motion and constraints in
generic curved backgrounds, namely the planetoid ansatz, was proposed recently
by some authors. We construct several specific examples of planetoid strings in
curved backgrounds which include Lorentzian wormholes, spherical Rindler
spacetime and the 2+1 dimensional black hole. A semiclassical quantisation is
performed and the Regge relations for the planetoids are obtained. The general
equations for the study of small perturbations about these solutions are
written down using the standard, manifestly covariant formalism. Applications
to special cases such as those of planetoid strings in Minkowski and spherical
Rindler spacetimes are also presented.Comment: 24 pages (including two figures), RevTex, expanded and figures adde
Exact solution for the energy density inside a one-dimensional non-static cavity with an arbitrary initial field state
We study the exact solution for the energy density of a real massless scalar
field in a two-dimensional spacetime, inside a non-static cavity with an
arbitrary initial field state, taking into account the Neumann and Dirichlet
boundary conditions. This work generalizes the exact solution proposed by Cole
and Schieve in the context of the Dirichlet boundary condition and vacuum as
the initial state. We investigate diagonal states, examining the vacuum and
thermal field as particular cases. We also study non-diagonal initial field
states, taking as examples the coherent and Schrodinger cat states.Comment: 10 pages, 8 figure
- …