30 research outputs found
Renormalization of Hamiltonian Field Theory; a non-perturbative and non-unitarity approach
Renormalization of Hamiltonian field theory is usually a rather painful
algebraic or numerical exercise. By combining a method based on the coupled
cluster method, analysed in detail by Suzuki and Okamoto, with a Wilsonian
approach to renormalization, we show that a powerful and elegant method exist
to solve such problems. The method is in principle non-perturbative, and is not
necessarily unitary.Comment: 16 pages, version shortened and improved, references added. To appear
in JHE
Boost-Invariant Running Couplings in Effective Hamiltonians
We apply a boost-invariant similarity renormalization group procedure to a
light-front Hamiltonian of a scalar field phi of bare mass mu and interaction
term g phi^3 in 6 dimensions using 3rd order perturbative expansion in powers
of the coupling constant g. The initial Hamiltonian is regulated using momentum
dependent factors that approach 1 when a cutoff parameter Delta tends to
infinity. The similarity flow of corresponding effective Hamiltonians is
integrated analytically and two counterterms depending on Delta are obtained in
the initial Hamiltonian: a change in mu and a change of g. In addition, the
interaction vertex requires a Delta-independent counterterm that contains a
boost invariant function of momenta of particles participating in the
interaction. The resulting effective Hamiltonians contain a running coupling
constant that exhibits asymptotic freedom. The evolution of the coupling with
changing width of effective Hamiltonians agrees with results obtained using
Feynman diagrams and dimensional regularization when one identifies the
renormalization scale with the width. The effective light-front Schroedinger
equation is equally valid in a whole class of moving frames of reference
including the infinite momentum frame. Therefore, the calculation described
here provides an interesting pattern one can attempt to follow in the case of
Hamiltonians applicable in particle physics.Comment: 24 pages, LaTeX, included discussion of finite x-dependent
counterterm
Making things happen : a model of proactive motivation
Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within one’s work environment, improving the organization’s internal functioning, or enhancing the organization’s strategic fit with its environment) and whether the self or situation is being changed. The authors then identify “can do,” “reason to,” and “energized to” motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc
Light-cone Hamiltonian flow for positronium
The technique of Hamiltonian flow equations is applied to the canonical Hamiltonian of quantum electrodynamics in the front form and 3+1 dimensions. The aim is to generate a bound state equation in a quantum field theory, particularly to derive an effective Hamiltonian which is practically solvable in Fock-spaces with reduced particle number, such that the approach can ultimately be used to address to the same problem for quantum chromodynamics. (orig.)Available from TIB Hannover: RO 6920(1998,33) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
Hard X-ray and hot electron environment in vacuum hohlraums at NIF
Time resolved hard x-ray images (hv 9 keV) and time
integrated hard x-ray spectra (hv 18-150 keV) from vacuum hohlraums
irradiated with four 351 nm wavelength NIF laser beams are presented as a
function of hohlraum size and laser power and duration. The hard x-ray
images and spectra provide insight into the time evolution of the hohlraum
plasma filling and the production of hot electrons. The fraction of laser
energy detected as hot electrons (f shows correlation with both
laser intensity and with an analytic plasma filling model