3,694 research outputs found

    The A-theoretic Farrell–Jones conjecture for virtually solvable groups

    No full text
    We prove the A -theoretic Farrell–Jones conjecture for virtually solvable groups. As a corollary, we obtain that the conjecture holds for S -arithmetic groups and lattices in almost connected Lie groups

    Anderson-Mott Transition in a Magnetic Field: Corrections to Scaling

    Full text link
    It is shown that the Anderson-Mott metal-insulator transition of paramagnetic, interacting disordered electrons in an external magnetic field is in the same universality class as the transition from a ferromagnetic metal to a ferromagnetic insulator discussed recently. As a consequence, large corrections to scaling exist in the magnetic-field universality class, which have been neglected in previous theoretical descriptions. The nature and consequences of these corrections to scaling are discussed.Comment: 5pp., REVTeX, no figs, final version as publishe

    Limit cycles of effective theories

    Get PDF
    A simple example is used to show that renormalization group limit cycles of effective quantum theories can be studied in a new way. The method is based on the similarity renormalization group procedure for Hamiltonians. The example contains a logarithmic ultraviolet divergence that is generated by both real and imaginary parts of the Hamiltonian matrix elements. Discussion of the example includes a connection between asymptotic freedom with one scale of bound states and the limit cycle with an entire hierarchy of bound states.Comment: 8 pages, 3 figures, revtex

    The WARPS survey - IV: The X-ray luminosity-temperature relation of high redshift galaxy clusters

    Get PDF
    We present a measurement of the cluster X-ray luminosity-temperature relation out to high redshift (z~0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fit in redshift and luminosity bins. The resulting temperature and luminosity measurements of these bins, which occupy a region of the high redshift L-T relation not previously sampled, are compared to existing measurements at low redshift in order to constrain the evolution of the L-T relation. We find a best fit to low redshift (z1 keV, to be L proportional to T^(3.15\pm0.06). Our data are consistent with no evolution in the normalisation of the L-T relation up to z~0.8. Combining our results with ASCA measurements taken from the literature, we find eta=0.19\pm0.38 (for Omega_0=1, with 1 sigma errors) where L_Bol is proportional to (1 + z)^eta T^3.15, or eta=0.60\pm0.38 for Omega_0=0.3. This lack of evolution is considered in terms of the entropy-driven evolution of clusters. Further implications for cosmological constraints are also discussed.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    Electrons in an annealed environment: A special case of the interacting electron problem

    Full text link
    The problem of noninteracting electrons in the presence of annealed magnetic disorder, in addition to nonmagnetic quenched disorder, is considered. It is shown that the proper physical interpretation of this model is one of electrons interacting via a potential that is long-ranged in time, and that its technical analysis by means of renormalization group techniques must also be done in analogy to the interacting problem. As a result, and contrary to previous claims, the model does not simply describe a metal-insulator transition in d=2+ϵd=2+\epsilon (ϵ≪1\epsilon\ll 1) dimensions. Rather, it describes a transition to a ferromagnetic state that, as a function of the disorder, precedes the metal-insulator transition close to d=2d=2. In d=3d=3, a transition from a paramagnetic metal to a paramagnetic insulator is possible.Comment: 13 pp., LaTeX, 2 eps figs; final version as publishe

    Spontaneous symmetry breaking in the colored Hubbard model

    Full text link
    The Hubbard model is reformulated in terms of different ``colored'' fermion species for the electrons or holes at different lattice sites. Antiferromagnetic ordering or d-wave superconductivity can then be described in terms of translationally invariant expectation values for colored composite scalar fields. A suitable mean field approximation for the two dimensional colored Hubbard model shows indeed phases with antiferromagnetic ordering or d-wave superconductivity at low temperature. At low enough temperature the transition to the antiferromagnetic phase is of first order. The present formulation also allows an easy extension to more complicated microscopic interactions.Comment: 19 pages, 5 figure

    Mesons in (2+1) Dimensional Light Front QCD. II. Similarity Renormalization Approach

    Get PDF
    Recently we have studied the Bloch effective Hamiltonian approach to bound states in 2+1 dimensional gauge theories. Numerical calculations were carried out to investigate the vanishing energy denominator problem. In this work we study similarity renormalization approach to the same problem. By performing analytical calculations with a step function form for the similarity factor, we show that in addition to curing the vanishing energy denominator problem, similarity approach generates linear confining interaction for large transverse separations. However, for large longitudinal separations, the generated interaction grows only as the square root of the longitudinal separation and hence produces violations of rotational symmetry in the spectrum. We carry out numerical studies in the G{\l}azek-Wilson and Wegner formalisms and present low lying eigenvalues and wavefunctions. We investigate the sensitivity of the spectra to various parameterizations of the similarity factor and other parameters of the effective Hamiltonian, especially the scale σ\sigma. Our results illustrate the need for higher order calculations of the effective Hamiltonian in the similarity renormalization scheme.Comment: 31 pages, 4 figures, to be published in Physical Review
    • …
    corecore