7 research outputs found

    Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent

    Get PDF
    Optical contrast agents have been widely applied to enhance the sensitivity and specificity of optical imaging with near-infrared (NIR) light. However, because of the overwhelming scattering of light in biological tissues, the spatial resolution of traditional optical imaging degrades drastically as the imaging depth increases. Here, for the first time to our knowledge, we present noninvasive photoacoustic angiography of animal brains in vivo with NIR light and an optical contrast agent. When indocyanine green polyethylene glycol, a novel absorption dye with prolonged clearance, is injected into the circulatory system of a rat, it obviously enhances the absorption contrast between the blood vessels and the background tissues. Because NIR light can penetrate deep into the brain tissues through the skin and skull, we are able to successfully reconstruct the vascular distribution in the rat brain from the photoacoustic signals. On the basis of differential optical absorption with and without contrast enhancement, a photoacoustic angiograph of a rat brain is acquired that matches the anatomical photograph well and exhibits high spatial resolution and a much-reduced background. This new technology demonstrates the potential for dynamic and molecular biomedical imaging

    Laser-induced photoacoustic tomography enhanced with an optical contrast agent

    Get PDF
    Optical contrast agents, such as indocyanine dyes, nano-particles and their functional derivatives, have been widely applied to enhance the sensitivity and specificity of optical imaging. However, due to the overwhelming scattering of light in biological tissues, the spatial resolution of traditional optical imaging degrades drastically as the imaging depth increases. For the first time to our knowledge, non-invasive in vivo photoacoustic imaging of an optical contrast agent, distributed in the rat brain, was implemented with near-infrared light. Injection of indocyanine green polyethylene glycol, a contrast agent with a high absorption at the 805-nm wavelength, into the circulatory system of a rat enhanced the absorption contrast between the blood vessels and the background brain tissues. Because near-infrared light can penetrate deep into the brain tissues through the skin and skull, we were able to successfully reconstruct the vascular distribution in the rat brain from the detected photoacoustic signals. The dynamic concentration of this contrast agent in the brain blood after the intravenous injection was also studied. This work proved that the distribution of an exogenous contrast agent in biological tissues can be imaged clearly and accurately by photoacoustic tomography. This new technology has high potential for application in dynamic and molecular medical imaging

    Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent

    Get PDF
    Optical contrast agents have been widely applied to enhance the sensitivity and specificity of optical imaging with near-infrared (NIR) light. However, because of the overwhelming scattering of light in biological tissues, the spatial resolution of traditional optical imaging degrades drastically as the imaging depth increases. Here, for the first time to our knowledge, we present noninvasive photoacoustic angiography of animal brains in vivo with NIR light and an optical contrast agent. When indocyanine green polyethylene glycol, a novel absorption dye with prolonged clearance, is injected into the circulatory system of a rat, it obviously enhances the absorption contrast between the blood vessels and the background tissues. Because NIR light can penetrate deep into the brain tissues through the skin and skull, we are able to successfully reconstruct the vascular distribution in the rat brain from the photoacoustic signals. On the basis of differential optical absorption with and without contrast enhancement, a photoacoustic angiograph of a rat brain is acquired that matches the anatomical photograph well and exhibits high spatial resolution and a much-reduced background. This new technology demonstrates the potential for dynamic and molecular biomedical imaging

    Laser-induced photoacoustic tomography enhanced with an optical contrast agent

    Get PDF
    Optical contrast agents, such as indocyanine dyes, nano-particles and their functional derivatives, have been widely applied to enhance the sensitivity and specificity of optical imaging. However, due to the overwhelming scattering of light in biological tissues, the spatial resolution of traditional optical imaging degrades drastically as the imaging depth increases. For the first time to our knowledge, non-invasive in vivo photoacoustic imaging of an optical contrast agent, distributed in the rat brain, was implemented with near-infrared light. Injection of indocyanine green polyethylene glycol, a contrast agent with a high absorption at the 805-nm wavelength, into the circulatory system of a rat enhanced the absorption contrast between the blood vessels and the background brain tissues. Because near-infrared light can penetrate deep into the brain tissues through the skin and skull, we were able to successfully reconstruct the vascular distribution in the rat brain from the detected photoacoustic signals. The dynamic concentration of this contrast agent in the brain blood after the intravenous injection was also studied. This work proved that the distribution of an exogenous contrast agent in biological tissues can be imaged clearly and accurately by photoacoustic tomography. This new technology has high potential for application in dynamic and molecular medical imaging

    Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study

    No full text
    Background Results from retrospective studies suggest that use of neuromuscular blocking agents during general anaesthesia might be linked to postoperative pulmonary complications. We therefore aimed to assess whether the use of neuromuscular blocking agents is associated with postoperative pulmonary complications. Methods We did a multicentre, prospective observational cohort study. Patients were recruited from 211 hospitals in 28 European countries. We included patients (aged ≥18 years) who received general anaesthesia for any in-hospital procedure except cardiac surgery. Patient characteristics, surgical and anaesthetic details, and chart review at discharge were prospectively collected over 2 weeks. Additionally, each patient underwent postoperative physical examination within 3 days of surgery to check for adverse pulmonary events. The study outcome was the incidence of postoperative pulmonary complications from the end of surgery up to postoperative day 28. Logistic regression analyses were adjusted for surgical factors and patients’ preoperative physical status, providing adjusted odds ratios (ORadj) and adjusted absolute risk reduction (ARRadj). This study is registered with ClinicalTrials.gov, number NCT01865513. Findings Between June 16, 2014, and April 29, 2015, data from 22803 patients were collected. The use of neuromuscular blocking agents was associated with an increased incidence of postoperative pulmonary complications in patients who had undergone general anaesthesia (1658 [7·6%] of 21694); ORadj 1·86, 95% CI 1·53–2·26; ARRadj –4·4%, 95% CI –5·5 to –3·2). Only 2·3% of high-risk surgical patients and those with adverse respiratory profiles were anaesthetised without neuromuscular blocking agents. The use of neuromuscular monitoring (ORadj 1·31, 95% CI 1·15–1·49; ARRadj –2·6%, 95% CI –3·9 to –1·4) and the administration of reversal agents (1·23, 1·07–1·41; –1·9%, –3·2 to –0·7) were not associated with a decreased risk of postoperative pulmonary complications. Neither the choice of sugammadex instead of neostigmine for reversal (ORadj 1·03, 95% CI 0·85–1·25; ARRadj –0·3%, 95% CI –2·4 to 1·5) nor extubation at a train-of-four ratio of 0·9 or more (1·03, 0·82–1·31; –0·4%, –3·5 to 2·2) was associated with better pulmonary outcomes. Interpretation We showed that the use of neuromuscular blocking drugs in general anaesthesia is associated with an increased risk of postoperative pulmonary complications. Anaesthetists must balance the potential benefits of neuromuscular blockade against the increased risk of postoperative pulmonary complications

    Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study

    No full text
    corecore