455 research outputs found

    19 The West Chester Fire Department and the Great Depression

    Get PDF

    The Latent Structure of Youth Responses to Peer Provocation

    Get PDF
    This study examined whether the three categories often applied to children’s behavior—aggressive, avoidant, and assertive—actually capture the structure of a naturalistic sample of youth behavior coded at a more micro level. A sample of lower-income youth (N = 392; M age = 12.69, SD = 0.95) completed a new multiple-choice measure asking them to select responses to scenarios depicting physical, verbal, and relational provocation by a peer. Youth responses to the vignettes showed the expected associations with self-reported aggression and regulation of anger, providing preliminary evidence for the convergent validity of the measure. Factor analysis confirmed that responses loaded on three factors: aggression, avoidance, and assertion. Model fit was adequate (RMSEA = .028) and cross-validated in a second sample (RMSEA = .039). Several types of responses loaded on two factors suggesting that some strategies that youth use to manage provocation are not “pure” examples of these broadband categories. Implications for conceptualization and measurement of youth social behavior are discussed

    Detection of chemotherapy-resistant patient-derived acute lymphoblastic leukemia clones in murine xenografts using cellular barcodes

    Get PDF
    Clonal heterogeneity fuels leukemia evolution, therapeutic resistance, and relapse. Upfront detection of therapy-res istant leukemia clones at diagnosis may allow adaptation of treatment and prevention of relapse, but this is hampered by a paucity of methods to identify and trace single leukemia-propagating cells and their clonal offspring. Here, we tested methods of cellular barcoding analysis, to trace the in vivo competitive dynamics of hundreds of patient-derived leukemia clones upon chemotherapy-mediated selective pressure. We transplanted Nod/Scid/Il2Rg(-/-) (NSG) mice with barcoded patient-derived or SupB15 acute lymphoblastic leukemia (ALL) cells and assessed clonal responses to dexamethasone, methotrexate, and vincristine, longitudinally and across nine anatomic locations. We illustrate that chemotherapy reduces clonal diversity in a drug-dependent manner. At end-stage disease, methotrexate-treated patientderived xenografts had significantly fewer clones compared with placebo-treated mice (100 +/- 10 vs. 160 +/- 15 clones, p = 0.0005), while clonal complexity in vincristineand dexamethasone-treated xenografts was unaffected (115 +/- 33 and 150 +/- 7 clones, p = NS). Using tools developed to assess differential gene expression, we determined whether these clonal patterns resulted from random clonal drift or selection. We identified 5 clones that were reproducibly enriched in methotrexate-treated patient-derived xenografts, suggestive of pre-existent resistance. Finally, we found that chemotherapymediated selection resulted in a more asymmetric distribution of leukemia clones across anatomic sites. We found that cellular barcoding is a powerful method to trace the clonal dynamics of human patient-derived leukemia cells in response to chemotherapy. In the future, integration of cellular barcoding with single-cell sequencing technology may allow in-depth characterization of therapy-resistant leukemia clones and identify novel targets to prevent relapse. (C) 2020 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc

    Donor-to-Donor Heterogeneity in the Clonal Dynamics of Transplanted Human Cord Blood Stem Cells in Murine Xenografts

    Get PDF
    Umbilical cord blood (UCB) provides an alternative source of hematopoietic stem cells (HSCs) for allogeneic transplantation. Administration of sufficient donor HSCs is critical to restore recipient hematopoiesis and to maintain long-term polyclonal blood formation. However, due to lack of unique markers, the frequency of HSCs among UCB CD34(+) cells is the subject of ongoing debate, urging for reproducible strategies for their counting. Here, we used cellular barcoding to determine the frequency and clonal dynamics of human UCB HSCs and to determine how data analysis methods affect these parameters. We transplanted lentivirally barcoded CD34(+) cells from 20 UCB donors into Nod/Scid/IL2Ry(-/-) (NSG) mice (n = 30). Twelve recipients (of 8 UCB donors) engrafted with >1% GFP(+) cells, allowing for clonal analysis by multiplexed barcode deep sequencing. Using multiple definitions of clonal diversity and strategies for data filtering, we demonstrate that differences in data analysis can change clonal counts by several orders of magnitude and propose methods to improve their consistency. Using these methods, we show that the frequency of NSG-repopulating cells was low (median similar to 1 HSC/10(4) CD34(+) UCB cells) and could vary up to 10-fold between donors. Clonal patterns in blood became increasingly consistent over time, likely reflecting initial output of transient progenitors, followed by long-term HSCs with stable hierarchies. The majority of long-term clones displayed multilineage output, yet clones with lymphoid- or myeloid-biased output were also observed. Altogether, this study uncovers substantial interdonor and analysis-induced variability in the frequency of UCB CD34(+) clones that contribute to post-transplant hematopoiesis. As clone tracing is increasingly relevant, we urge for universal and transparent methods to count HSC clones during normal aging and upon transplantation. (C) 2019 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc

    Persistent expression of microRNA-125a targets is required to induce murine hematopoietic stem cell repopulating activity

    Get PDF
    MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression posttranscriptionally by binding to the 30 untranslated regions of their target mRNAs. The evolutionarily conserved microRNA-125a (miR-125a) is highly expressed in both murine and human hematopoietic stem cells (HSCs), and previous studies have found that miR-125 strongly enhances self renewal of HSCs and progenitors. In this study we explored whether temporary overexpression of miR-125a would be sufficient to permanently increase HSC self-renewal or, rather, whether persistent overexpression of miR-125a is required. We used three complementary in vivo approaches to reversibly enforce expression of miR-125a in murine HSCs. Additionally, we interrogated the underlying molecular mechanisms responsible for the functional changes that occur in HSCs on overexpression of miR-125a. Our data indicate that continuous expression of miR-125a is required to enhance HSC activity. Our molecular analysis confirms changes in pathways that explain the characteristics of miR-125a overexpressing HSCs. Moreover, it provides several novel putative miR-125a targets, but also highlights the complex molecular changes that collectively lead to enhanced HSC function. (c) 2020 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/

    Chemotherapy prior to autologous bone marrow transplantation impairs long-term engraftment in mice

    Get PDF
    Objective. Autologous bone marrow transplantation in cancer patients is often preceded by multiple cycles of chemotherapy. In this study, we assessed in a mouse model whether stem cells were affected by prior chemotherapy. Methods. Donor mice were treated with three consecutive injections of 150 mg/kg 5-fluorouracil (5-FU). Peripheral blood counts were allowed to recover before the subsequent dose of 5-FU was given. Mice recovered from three doses of 5-FU and showed normal steady-state hematopoiesis. Bone marrow cells from these mice were mixed with congenic competitor cells and transplanted into lethally irradiated recipients. Results. Although in vivo homing of cells from these mice was not impaired, donor leukocyte contribution steadily decreased posttransplantation. In contrast to in vivo homing, both in vitro migration toward stromal-derived factor (SDF)-1 and the average CXC chemokine receptor-4 (CXCR4) expression were lower in 5-FU-treated cells. Moderate reductions in L-selectin and CD11a expression were observed on stem cells of 5-FU-treated mice. CD43, CD44, CD49d, and CD49e were normally expressed and could thus not explain the reduced engraftment of these cells. Conclusion. We therefore conclude that 5-FU either directly damages stem cells or that the replicative stress induced by 5-FU causes a decline in stem cell reconstitution potential resulting in lower chimerism levels posttransplantation, that declines in time. (C) 2003 International Society for Experimental Hematology. Published by Elsevier Inc

    Examining outcome variability: Correlates of treatment response in a child and adolescent anxiety clinic

    Get PDF
    Examined correlates of treatment response in a clinic providing cognitive-behavioral therapy for children with anxiety disorders. Youth (ages 7 to 15) with a primary Diagnostic and Statistical Manual of Mental Disorders (3rd ed., rev., or 4th ed.; American Psychiatric Association, 198
    • …
    corecore