32 research outputs found

    Genomics and pathotypes of the many faces of Escherichia coli

    Get PDF
    Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species

    Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator

    Get PDF
    The mycobacterial type VII secretion system ESX-1 is responsible for the secretion of a number of proteins that play important roles during host infection. The regulation of the expression of secreted proteins is often essential to establish successful infection. Using transcriptome sequencing, we found that the abrogation of ESX-1 function in Mycobacterium marinum leads to a pronounced increase in gene expression levels of the espA operon during the infection of macrophages. In addition, the disruption of ESX-1-mediated protein secretion also leads to a specific down-regulation of the ESX-1 substrates, but not of the structural components of this system, during growth in culture medium. This effect is observed in both M. marinum and M. tuberculosis. We established that down-regulation of ESX-1 substrates is the result of a regulatory process that is influenced by the putative transcriptional regulator whib6, which is located adjacent to the esx-1 locus. In addition, the overexpression of the ESX-1-associated PE35/PPE68 protein pair resulted in a significantly increased secretion of the ESX-1 substrate EsxA, demonstrating a functional link between these proteins. Taken together, these data show that WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates and that ESX-1 substrates are regulated independently from the structural components, both during infection and as a result of active secretion

    Correction: First demonstration of antigen induced cytokine expression by CD4-1āŗ lymphocytes in a poikilotherm: Studies in zebrafish (Danio rerio)

    Get PDF
    Correction of the article "First demonstration of antigen induced cytokine expression by CD4-1āŗ lymphocytes in a poikilotherm: Studies in zebrafish (Danio rerio)", https://doi.org/10.1371/journal.pone.016914

    Global Distribution of O Serotypes and Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli Collected From the Blood of Patients With Bacteremia Across Multiple Surveillance Studies

    Get PDF
    Background: Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of bacteremia worldwide, with older populations having increased risk of invasive bacterial disease. Increasing resistance to first-line antibiotics and emergence of multidrug-resistant (MDR) strains represent major treatment challenges. ExPEC O serotypes are key targets for potential multivalent conjugate vaccine development. Therefore, we evaluated the O serotype distribution and antibiotic resistance profiles of ExPEC strains causing bloodstream infections across 4 regions. Methods: Blood culture isolates from patients aged ā‰„60 years collected during 5 retrospective E. coli surveillance studies in Europe, North America, Asia-Pacific, and South America (2011-2017) were analyzed. Isolates were O serotyped by agglutination; O genotyping was performed for nontypeable isolates. Antimicrobial susceptibility testing was also conducted. Results: Among 3217 ExPEC blood culture isolates, the most ubiquitous O serotype was O25 (n = 737 [22.9%]), followed by O2, O6, O1, O75, O15, O8, O16, O4, O18, O77 group, O153, O9, O101/O162, O86, and O13 (prevalence of ā‰„1%). The prevalence of these O serotypes was generally consistent across regions, apart from South America; together, these 16 O serotypes represented 77.6% of all ExPEC bacteremia isolates analyzed. The overall MDR frequency was 10.7%, with limited variation between regions. Within the MDR subset (n = 345), O25 showed a dominant prevalence of 63.2% (n = 218). Conclusions: Predominant O serotypes among ExPEC bacteremia isolates are widespread across different regions. O25 was the most prevalent O serotype overall and particularly dominant among MDR isolates. These findings may inform the design of multivalent conjugate vaccines that can target the predominant O serotypes associated with invasive ExPEC disease in older adults

    How do mycobacteria activate CD8(+) T cells?

    No full text
    CD8(+) T cells are activated upon presentation of antigens from the cytosol. Therefore, it was unclear how pathogenic mycobacteria could prime this type of lymphocyte, given that these microbes were thought to remain in phagosomes and, hence, be shielded from the host cytosol. Recently, it was shown that some mycobacteria can enter the cytosol through translocation from phagolysosomes, providing a direct mechanism for CD8(+) T cell priming. However, this mechanism might not apply to other mycobacteria, which do not appear to be able to enter the cytosol. Here, we discuss the different hypotheses to explain the induction of CD8(+) T cell responses in mycobacterial infection

    Genomics and pathotypes of the many faces of Escherichia coli

    No full text
    Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coliā€™s infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species

    Genomics and pathotypes of the many faces of Escherichia coli

    No full text
    Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species

    ZfCD4-1 expression from the sorted CD4-1<sup>+</sup> cells.

    No full text
    <p>(A) FACS plot showing CD4-1<sup><b>+</b></sup> cells from the lymphocyte gate (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126378#pone.0126378.g005" target="_blank">Fig 5</a> (B)). In the overlay histogram the CD4-1<sup><b>+</b></sup> lymphocyte population is indicated with a black line whilst control cells stained with secondary Ab only are shown with a grey line. The left histogram shows unsorted cells whilst the right one shows FACS purified CD4-1<sup><b>+</b></sup> cells. H&E staining shows the morphology of the sorted CD4-1<sup><b>+</b></sup> lymphocytes. Scale bar = 5Ī¼m. (B) Transcript expression of different cell marker genes, as assessed by QRT-PCR in FACS purified CD4-1<sup><b>+</b></sup> cells sorted from the lymphocyte gate and unsorted cells. Each bar represents the mean of three independent measurements expressed relative to EF-1Ī±.</p
    corecore