5 research outputs found

    Leaf Light Reflectance for Evaluating Red Oak Lettuce Cultivated under Low Light Intensity

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āđāļŠāļ‡āđ€āļ›āđ‡āļ™āļ›āļąāļˆāļˆāļąāļĒāļŠāļģāļ„āļąāļāļ—āļĩāđˆāļĄāļĩāļœāļĨāļ•āđˆāļ­āļāļēāļĢāđ€āļˆāļĢāļīāļāđ€āļ•āļīāļšāđ‚āļ•āļ‚āļ­āļ‡āļœāļąāļāļŠāļĨāļąāļ”āļšāļĢāļīāđ‚āļ āļ„āđƒāļš āđ‚āļ”āļĒāļœāļąāļāļ—āļĩāđˆāļ›āļĨāļđāļāļ āļēāļĒāđƒāļ•āđ‰āļŠāļ āļēāļž āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāđāļŠāļ‡āļ•āđˆāļģāļˆāļ°āļĄāļĩāļœāļĨāļœāļĨāļīāļ•āļĨāļ”āļĨāļ‡ āļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ—āļēāļ‡āļŠāļĢāļĩāļĢāļ§āļīāļ—āļĒāļēāļ‚āļ­āļ‡āļœāļąāļāđ€āļĄāļ·āđˆāļ­āđ„āļ”āđ‰āļĢāļąāļšāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāđāļŠāļ‡āđ„āļĄāđˆāđ€āļžāļĩāļĒāļ‡āļžāļ­āļˆāļķāļ‡āđ€āļ›āđ‡āļ™āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāļ™āļģāđ„āļ›āđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāļĢāļ°āļšāļšāļ›āļĨāļđāļ āđƒāļ™āļāļēāļĢāļĻāļķāļāļĐāļēāļ„āļĢāļąāđ‰āļ‡āļ™āļĩāđ‰āđƒāļŠāđ‰āļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļāļēāļĢāļŠāļ°āļ—āđ‰āļ­āļ™āļ‚āļ­āļ‡āđƒāļšāđ€āļžāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ—āļēāļ‡āļŠāļĢāļĩāļĢāļ§āļīāļ—āļĒāļēāļ‚āļ­āļ‡āļœāļąāļāļāļēāļ”āļŦāļ­āļĄāđ€āļĢāļ”āđ‚āļ­āđŠāļ„āļ—āļĩāđˆāļ›āļĨāļđāļāđƒāļ™āļĢāļ°āļšāļšāđ„āļŪāđ‚āļ”āļĢāļžāļ­āļ™āļīāļāļŠāđŒāđƒāļ™āļŠāļ āļēāļžāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāđāļŠāļ‡āļ›āļāļ•āļīāđāļĨāļ°āđƒāļ™āļŠāļ āļēāļžāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāđāļŠāļ‡āļ•āđˆāļģāļāļ§āđˆāļēāļ›āļāļ•āļī āļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļžāļšāļ§āđˆāļēāļœāļąāļāļāļēāļ”āļŦāļ­āļĄāđ€āļĢāļ”āđ‚āļ­āđŠāļ„āļ—āļĩāđˆāļ›āļĨāļđāļāđƒāļ™āļŠāļ āļēāļžāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāđāļŠāļ‡āļ•āđˆāļģāļāļ§āđˆāļēāļ›āļāļ•āļīāļĄāļĩāļ„āļ§āļēāļĄāļāļ§āđ‰āļēāļ‡āļ—āļĢāļ‡āļžāļļāđˆāļĄāđāļĨāļ°āļ™āđ‰āļģāļŦāļ™āļąāļāļŠāļ”āļĨāļ”āļĨāļ‡ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāđāļŠāļ‡āļ•āđˆāļģāļĒāļąāļ‡āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļ›āļĢāļīāļĄāļēāļ“āđāļ­āļ™āđ‚āļ˜āđ„āļ‹āļĒāļēāļ™āļīāļ™āđƒāļ™āđƒāļšāļ‚āļ­āļ‡āļœāļąāļāļāļēāļ”āļŦāļ­āļĄāđ€āļĢāļ”āđ‚āļ­āđŠāļ„āļĨāļ”āļĨāļ‡ āđ€āļĄāļ·āđˆāļ­āļ•āļĢāļ§āļˆāļ§āļąāļ”āļ„āđˆāļēāļāļēāļĢāļŠāļ°āļ—āđ‰āļ­āļ™āđāļŠāļ‡āđāļĨāļ°āļ™āļģāļĄāļēāļ„āļģāļ™āļ§āļ“āļ”āļąāļŠāļ™āļĩāļŠāđ€āļ›āļāļ•āļĢāļąāļĄāļžāļšāļ§āđˆāļē āļ”āļąāļŠāļ™āļĩ Green Normalized Difference Vegetable Index (GNDVI) āđāļĨāļ°āļ”āļąāļŠāļ™āļĩ Anthocyanin Reflectance Index (ARI1 āđāļĨāļ° ARI2) āļ‚āļ­āļ‡āđƒāļšāļœāļąāļāļāļēāļ”āļŦāļ­āļĄāđ€āļĢāļ”āđ‚āļ­āđŠāļ„āļ—āļĩāđˆāļ›āļĨāļđāļāđƒāļ™āļŠāļ āļēāļžāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāđāļŠāļ‡āļ›āļāļ•āļīāļĄāļĩāļ„āđˆāļēāļŠāļđāļ‡āļāļ§āđˆāļēāļœāļąāļāļāļēāļ”āļŦāļ­āļĄāđ€āļĢāļ”āđ‚āļ­āđŠāļ„āļ—āļĩāđˆāļ›āļĨāļđāļāđƒāļ™āļŠāļ āļēāļžāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāđāļŠāļ‡āļ•āđˆāļģāļāļ§āđˆāļēāļ›āļāļ•āļī āđāļĨāļ°āļ”āļąāļŠāļ™āļĩāļŠāđ€āļ›āļāļ•āļĢāļąāļĄāļ—āļąāđ‰āļ‡āļŠāļēāļĄāļ™āļĩāđ‰āļĒāļąāļ‡āļĄāļĩāļŠāļŦāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļāļąāļšāļ›āļĢāļīāļĄāļēāļ“āđāļ­āļ™āđ‚āļ˜āđ„āļ‹āļĒāļēāļ™āļīāļ™āđƒāļ™āđƒāļš āļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļ‚āļ­āļ‡āļ„āđˆāļēāļāļēāļĢāļŠāļ°āļ—āđ‰āļ­āļ™āđāļŠāļ‡āđƒāļ™āđƒāļšāļœāļąāļāļāļēāļ”āļŦāļ­āļĄāđ€āļĢāļ”āđ‚āļ­āđŠāļ„āļ—āļĩāđˆāļ›āļĨāļđāļāđƒāļ™āļŠāļ­āļ‡āļŠāļ āļēāļžāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāđāļŠāļ‡āļ™āļĩāđ‰āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāđ„āļ›āđƒāļŠāđ‰āļ•āļĢāļ§āļˆāļŠāļ­āļšāļŠāļļāļ‚āļ āļēāļžāļžāļ·āļŠāđ€āļžāļ·āđˆāļ­āđƒāļŠāđ‰āļˆāļąāļ”āļāļēāļĢāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāđāļŠāļ‡āđƒāļ™āđ‚āļĢāļ‡āđ€āļĢāļ·āļ­āļ™āļ•āđˆāļ­āđ„āļ›Â ABSTRACT   Light is an important factor for the growth and development of leafy salad vegetables. Vegetables cultivated under low light intensity will produce a low yield. The monitoring of physiological changes in vegetables grown under inadequate light intensity is the information for planting system management. In this study, leaf light reflectance was investigated in order to compare the physiological changes of Red Oak lettuce that were hydroponically grown under normal light intensity and under lower light intensity than usual. The result showed that Red Oak lettuce grown under lower light intensity than usual had small canopy width and low fresh weight. Moreover, low light intensity could reduce the anthocyanin production in leaves of Red Oak lettuce. The leaf light reflectance was measured and then calculated to various spectral indices. Red Oak lettuce grown under normal light intensity exhibited higher Normalized Difference Vegetable Index (GNDVI) and Anthocyanin Reflectance Index (ARI1 and ARI2) which are kinds of spectral index than that of Red Oak lettuce grown under lower light intensity than usual. Moreover, those three spectral indices had a correlation with the anthocyanin content in leaves. Differences of leaf light reflectance in Red Oak lettuce cultivated under two conditions of light intensity could be applied to monitor plant health for management of the light intensity in a plant nursery in the future

    Selecting Temperature for Screening Heat Tolerance in ‘Tavee 60’ Chili Seedlings

    Get PDF
    ABSTRACT Crop yield has been affected by unfavorable growth conditions. This study aimed to find temperature for screening heat-tolerate chili pepper (Capsicum annuum) mutated by gamma radiation. Two-month-old seedlings were grown in the growth chamber at four temperature treatments as 27 (control), 34, 36 and 40 oC for 7 days. Leaf temperature (LT), non-photochemical quenching (qN), photochemical efficiency of PSII (Fv/Fm) and electron transport rate (ETR) were determined. The results showed that leaf temperature of control plants was lower than other treatments. The qN tended to increase according to the higher temperature treatments. Fv/Fm ratio and ETR of seedlings under 40 oC treatment were lower than the others.  In addition, under 40 oC, seedlings displayed the injury symptom after 4 days and died after 7 days. These levels of injury symptoms lead to the new qualitative parameter for future work called ‘injury index’. In conclusion, the seedlings at 40 oC treatment were different from the control based on Fv/Fm. In order to get the new improved cultivar, the temperature at 40 oC and Fv/Fm were selected for the future heat-tolerant screening of chili pepper seedlings mutated by gamma irradiation

    Effects of Temperature on Para rubber (Hevea brasiliensis MÞell. Arg.) Leaf Photosynthesis Rates at Different Ambient CO2 Concentrations

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ•āđˆāļ­āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļ‚āļ­āļ‡āđƒāļšāļĒāļēāļ‡āļžāļēāļĢāļēāļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāļ•āđˆāļēāļ‡āđ† āđ‚āļ”āļĒāļ§āļąāļ”āļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ•āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļ‚āļ­āļ‡āđƒāļšāļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ•āđˆāļēāļ‡āđ† āđƒāļ™āļŦāđ‰āļ­āļ‡āļ„āļ§āļšāļ„āļļāļĄāļ­āļļāļ“āļŦāļ āļđāļĄāļī āļāļģāļŦāļ™āļ”āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāđāļŠāļ‡ 1,400 Âĩmol m-2 s-1 āļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āļŠāļąāļĄāļžāļąāļ—āļ˜āđŒāļĢāļ°āļŦāļ§āđˆāļēāļ‡ 50-80 āđ€āļ›āļ­āļĢāđŒāđ€āļ‹āđ‡āļ™āļ•āđŒ āļ āļēāļĒāđƒāļ•āđ‰āļ­āļļāļ“āļŦāļ āļđāļĄāļī 9 āļĢāļ°āļ”āļąāļš āļ„āļ·āļ­ 10, 15, 22, 28, 32, 36, 40, 42 āđāļĨāļ° 45 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļˆāļēāļāļ™āļąāđ‰āļ™āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ‚āđ‰āļ­āļĄāļđāļĨāļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļ•āđˆāļ­āļ­āļļāļ“āļŦāļ āļđāļĄāļīāđƒāļš āđ‚āļ”āļĒāđƒāļŠāđ‰āļŠāļĄāļāļēāļĢ 4th order polynomial equation āđāļĨāļ°āļ›āļĢāļ°āđ€āļĄāļīāļ™āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ•āđˆāļ­āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļ‚āļ­āļ‡āđƒāļšāļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāđƒāļ™āļĢāļ°āļ”āļąāļšāļ•āđˆāļēāļ‡āđ† āļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļžāļšāļ§āđˆāļē āļŠāļĄāļāļēāļĢ 4th order polynomial equation āļ­āļ˜āļīāļšāļēāļĒāļ„āļ§āļēāļĄāđāļ›āļĢāļ›āļĢāļ§āļ™āļ‚āļ­āļ‡āļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ•āđˆāļ­āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāđ„āļ”āđ‰āļ”āļĩ āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāļ—āļģāđƒāļŦāđ‰āļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ•āđˆāļ­āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļ‚āļ­āļ‡āđƒāļšāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āđ„āļ› āđ€āļĄāļ·āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāđ€āļžāļīāđˆāļĄāļĄāļēāļāļ‚āļķāđ‰āļ™ āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļˆāļ°āđ€āļžāļīāđˆāļĄāļĄāļēāļāļ‚āļķāđ‰āļ™ āđāļĨāļ°āļžāļšāļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļ•āđˆāļ­āļ­āļļāļ“āļŦāļ āļđāļĄāļīāđ€āļžāļīāđˆāļĄāļĄāļēāļāļ‚āļķāđ‰āļ™āļ”āđ‰āļ§āļĒ āđāļĨāļ°āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļāļąāļšāļ„āđˆāļēāļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ™āļąāđ‰āļ™āđ† āđ€āļžāļīāđˆāļĄāļĄāļēāļāļ‚āļķāđ‰āļ™āđ€āļŠāđˆāļ™āđ€āļ”āļĩāļĒāļ§āļāļąāļ™ āļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļ—āļĩāđˆāļˆāļ°āļ­āļīāđˆāļĄāļ•āļąāļ§āļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāļĄāļēāļāļāļ§āđˆāļē 1,200 Âĩmol mol-1 ABSTRACT   This research aimed to study the effects of temperature on Para rubber (Hevea brasiliensis Muell. Arg.) leaf photosynthesis rates at different ambient CO2 concentrations by measuring responses of the leaf net photosynthetic rates to the CO2 concentrations in the air at different temperatures in temperature controlled room.  The measurement was done using photosynthetically active photon flux at  1,400 Âĩmol m-2 s-1, 50 % to 80 %  relative humidity,  and nine temperature levels; (10, 15, 22, 28, 32, 36, 40, 42 and 45 šC). The responses of net photosynthetic rates to leaf temperatures were fitted using the 4th order polynomial equation. Then, the optimum temperatures for the net photosynthetic rate at different CO2 concentration levels were estimated. The result showed that 4th order polynomial equation provided good fit to the responses of the net photosynthetic rates to leaf temperatures. The changes in CO2 concentration influenced the responses. Increased CO2 concentration led to increased net photosynthetic rate and also the responsiveness of net photosynthetic rate to temperature. Finally, optimum temperature increased with CO2 concentration up to approximately 1200 Âĩmol m-2 s-1

    Effect of Drought Stress on Proline Gene Expression, Enzyme Activity, and Physiological Responses in Thai Mulberry (Morus spp.)

    Get PDF
    Mulberries are vital for the silk industry as the sole natural food for silkworms, but their quality and quantity can be greatly impacted by environmental factors, notably water shortages or droughts. In this study, the proline content and expression levels of the Pyrroline-5-carboxylate reductase (P5CR) gene in four recommended Thai mulberry varieties (Sakhonnakorn, Sakhonnakorn 85, Burirum 60, and Srisaket 84) and one standard drought tolerant variety (SRCM9809-34) were measured under drought stress. Additionally, physiological data and antioxidative enzymatic activities were also examined. The findings revealed that SRCM9809-34, a drought-tolerant variety, had the lowest proline content, followed by Sakhonnakorn 85, Burirum 60, while the highest proline content was observed in Srisaket 84. Although there was no correlation between the expression level of the P5CR gene and proline content, the overall trend in all varieties was the same: proline content increased after drought conditions. Regarding physiological responses, the wilting score showed similar results to proline content, with SRCM9809-34 having the lowest proline content and wilting score. Moreover, SRCM9809-34 exhibited the highest RWC, Pn and WUE values, as well as the lowest level of MDA and H2O2. Our results validated and indicated that SRCM9809-34 is a drought-tolerant variety. From this finding, among the four Thai mulberry varieties, Sakhonnakorn 85 exhibited the highest potential for drought tolerance, and this potential can be enhanced through crossbreeding with SRCM9809-34
    corecore