3,930 research outputs found

    Multiedge slitter for FCC

    Get PDF
    Tool cuts multiple slits up to 3 in. long between conductors of flat conductor cables up to 3 in. wide to prepare them for termination on terminal boards or in multipin connectors

    Density fluctuations and the structure of a nonuniform hard sphere fluid

    Full text link
    We derive an exact equation for density changes induced by a general external field that corrects the hydrostatic approximation where the local value of the field is adsorbed into a modified chemical potential. Using linear response theory to relate density changes self-consistently in different regions of space, we arrive at an integral equation for a hard sphere fluid that is exact in the limit of a slowly varying field or at low density and reduces to the accurate Percus-Yevick equation for a hard core field. This and related equations give accurate results for a wide variety of fields

    Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions

    Full text link
    Strong short ranged positional correlations involving counterions can induce a net attractive force between negatively charged strands of DNA, and lead to the formation of ion pairs in dilute ionic solutions. But the long range of the Coulomb interactions impedes the development of a simple local picture. We address this general problem by mapping the properties of a nonuniform system with Coulomb interactions onto those of a simpler system with short ranged intermolecular interactions in an effective external field that accounts for the averaged effects of appropriately chosen long ranged and slowly varying components of the Coulomb interactions. The remaining short ranged components combine with the other molecular core interactions and strongly affect pair correlations in dense or strongly coupled systems. We show that pair correlation functions in the effective short ranged system closely resemble those in the uniform primitive model of ionic solutions, and illustrate the formation of ion pairs and clusters at low densities. The theory accurately describes detailed features of the effective attraction between two equally charged walls at strong coupling and intermediate separations of the walls. New analytical results for the minimal coupling strength needed to get any attraction and for the separation where the attractive force is a maximum are presented.Comment: 8 pages, 5 figures. To be published in PNA

    Local molecular field theory for the treatment of electrostatics

    Full text link
    We examine in detail the theoretical underpinnings of previous successful applications of local molecular field (LMF) theory to charged systems. LMF theory generally accounts for the averaged effects of long-ranged components of the intermolecular interactions by using an effective or restructured external field. The derivation starts from the exact Yvon-Born-Green hierarchy and shows that the approximation can be very accurate when the interactions averaged over are slowly varying at characteristic nearest-neighbor distances. Application of LMF theory to Coulomb interactions alone allows for great simplifications of the governing equations. LMF theory then reduces to a single equation for a restructured electrostatic potential that satisfies Poisson's equation defined with a smoothed charge density. Because of this charge smoothing by a Gaussian of width sigma, this equation may be solved more simply than the detailed simulation geometry might suggest. Proper choice of the smoothing length sigma plays a major role in ensuring the accuracy of this approximation. We examine the results of a basic confinement of water between corrugated wall and justify the simple LMF equation used in a previous publication. We further generalize these results to confinements that include fixed charges in order to demonstrate the broader impact of charge smoothing by sigma. The slowly-varying part of the restructured electrostatic potential will be more symmetric than the local details of confinements.Comment: To be published in J Phys-Cond Matt; small misprint corrected in Eq. (12) in V

    Attraction Between Like-Charged Walls: Short-Ranged Simulations Using Local Molecular Field Theory

    Full text link
    Effective attraction between like-charged walls mediated by counterions is studied using local molecular field (LMF) theory. Monte Carlo simulations of the "mimic system'' given by LMF theory, with short-ranged "Coulomb core" interactions in an effective single particle potential incorporating a mean-field average of the long-ranged Coulomb interactions, provide a direct test of the theory, and are in excellent agreement with more complex simulations of the full Coulomb system by Moreira and Netz [Eur. Phys. J. E 8, 33 (2002)]. A simple, generally-applicable criterion to determine the consistency parameter sigma_{min} needed for accurate use of the LMF theory is presented

    Circles in the Sky: Finding Topology with the Microwave Background Radiation

    Get PDF
    If the universe is finite and smaller than the distance to the surface of last scatter, then the signature of the topology of the universe is writ large on the microwave background sky. We show that the microwave background will be identified at the intersections of the surface of last scattering as seen by different ``copies'' of the observer. Since the surface of last scattering is a two-sphere, these intersections will be circles, regardless of the background geometry or topology. We therefore propose a statistic that is sensitive to all small, locally homogeneous topologies. Here, small means that the distance to the surface of last scatter is smaller than the ``topology scale'' of the universe.Comment: 14 pages, 10 figures, IOP format. This paper is a direct descendant of gr-qc/9602039. To appear in a special proceedings issue of Class. Quant. Grav. covering the Cleveland Topology & Cosmology Worksho

    Segue Between Favorable and Unfavorable Solvation

    Full text link
    Solvation of small and large clusters are studied by simulation, considering a range of solvent-solute attractive energy strengths. Over a wide range of conditions, both for solvation in the Lennard-Jones liquid and in the SPC model of water, it is shown that the mean solvent density varies linearly with changes in solvent-solute adhesion or attractive energy strength. This behavior is understood from the perspective of Weeks' theory of solvation [Ann. Rev. Phys. Chem. 2002, 53, 533] and supports theories based upon that perspective.Comment: 8 pages, 7 figure

    Reconstructing the global topology of the universe from the cosmic microwave background

    Get PDF
    If the universe is multiply-connected and sufficiently small, then the last scattering surface wraps around the universe and intersects itself. Each circle of intersection appears as two distinct circles on the microwave sky. The present article shows how to use the matched circles to explicitly reconstruct the global topology of space.Comment: 6 pages, 2 figures, IOP format. To be published in the proceedings of the Cleveland Cosmology and Topology Workshop 17-19 Oct 1997. Submitted to Class. Quant. Gra

    Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds

    Full text link
    Observational data hints at a finite universe, with spherical manifolds such as the Poincare dodecahedral space tentatively providing the best fit. Simulating the physics of a model universe requires knowing the eigenmodes of the Laplace operator on the space. The present article provides explicit polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincare dodecahedral space S3/I*, the binary octahedral space S3/O*, the binary tetrahedral space S3/T*, the prism manifolds S3/D_m* and the lens spaces L(p,1).Comment: v3. Final published version. 27 pages, 1 figur
    • …
    corecore