5,293 research outputs found

    Absorption spectrum of iron in the vacuum ultraviolet 2950 - 1588 angstrom

    Get PDF
    Absorption spectrum of iron in vacuum ultraviole

    Expectations of Field Supervisors in Kenya: Implications for Community-based Human Service Practicums

    Get PDF
    Community-based learning (CBL), which provides opportunities for undergraduate students to develop disciplinary and work-related knowledge and skills, is increasingly becoming an integral component of higher education. Similar to other countries, there is a widespread belief among employers in Kenya that there is a mismatch between university programs and labour market demands. In order to enhance the employability of graduates, many departments at a Kenyan university have incorporated work-integrated experiential learning opportunities such as practicums in the educational experience for undergraduate students. The aim of this article is to describe the expectations of field supervisors in host organisations participitating in a community-based human services program at a Kenyan University. Fifteen purposively sampled field supervisors participated in individual face-to-face interviews that included questions about their understanding of the department’s expectations of student learning activities during practicums, knowledge of the academic preparation of students in the program and challenges associated with the supervisory role. Six field supervisors exhibited some level of understanding of the expectations of their role in working with practicum students, while nine field supervisors indicated unclear expectations of the students’ practicum experience. Thematic analysis revealed key themes related to: (1) student abilities, learning goals and their contributions to the host organisations, and (2) the academic program of study and academic support available from the university faculty or staff to field supervisors. The results of our study revealed a lack of clarity around practicum expectations for most of the field supervisors interviewed and insufficient preparation of the community-based organisations to host a practicum student. Several recommendations are identified to clarify the expectations of community partner organisations and the staff providing student supervision to ensure benefits for both students and the host organisation. Results from this study can be used to inform the development or improvement of practicum opportunities focused on producing a skilled workforce

    Properties of cage rearrangements observed near the colloidal glass transition

    Full text link
    We use confocal microscopy to study the motions of particles in concentrated colloidal systems. Near the glass transition, diffusive motion is inhibited, as particles spend time trapped in transient ``cages'' formed by neighboring particles. We measure the cage sizes and lifetimes, which respectively shrink and grow as the glass transition approaches. Cage rearrangements are more prevalent in regions with lower local concentrations and higher disorder. Neighboring rearranging particles typically move in parallel directions, although a nontrivial fraction move in anti-parallel directions, usually from pairs of particles with initial separations corresponding to the local maxima and minima of the pair correlation function g(r)g(r), respectively.Comment: 5 pages, 4 figures; text & figures revised in v

    Forced motion of a probe particle near the colloidal glass transition

    Full text link
    We use confocal microscopy to study the motion of a magnetic bead in a dense colloidal suspension, near the colloidal glass transition volume fraction ϕg\phi_g. For dense liquid-like samples near ϕg\phi_g, below a threshold force the magnetic bead exhibits only localized caged motion. Above this force, the bead is pulled with a fluctuating velocity. The relationship between force and velocity becomes increasingly nonlinear as ϕg\phi_g is approached. The threshold force and nonlinear drag force vary strongly with the volume fraction, while the velocity fluctuations do not change near the transition.Comment: 7 pages, 4 figures revised version, accepted for publication in Europhysics Letter

    Local molecular field theory for the treatment of electrostatics

    Full text link
    We examine in detail the theoretical underpinnings of previous successful applications of local molecular field (LMF) theory to charged systems. LMF theory generally accounts for the averaged effects of long-ranged components of the intermolecular interactions by using an effective or restructured external field. The derivation starts from the exact Yvon-Born-Green hierarchy and shows that the approximation can be very accurate when the interactions averaged over are slowly varying at characteristic nearest-neighbor distances. Application of LMF theory to Coulomb interactions alone allows for great simplifications of the governing equations. LMF theory then reduces to a single equation for a restructured electrostatic potential that satisfies Poisson's equation defined with a smoothed charge density. Because of this charge smoothing by a Gaussian of width sigma, this equation may be solved more simply than the detailed simulation geometry might suggest. Proper choice of the smoothing length sigma plays a major role in ensuring the accuracy of this approximation. We examine the results of a basic confinement of water between corrugated wall and justify the simple LMF equation used in a previous publication. We further generalize these results to confinements that include fixed charges in order to demonstrate the broader impact of charge smoothing by sigma. The slowly-varying part of the restructured electrostatic potential will be more symmetric than the local details of confinements.Comment: To be published in J Phys-Cond Matt; small misprint corrected in Eq. (12) in V

    Particle Aggregation in a turbulent Keplerian flow

    Get PDF
    In the problem of planetary formation one seeks a mechanism to gather small solid particles together into larger accumulations of solid matter. Here we describe a scenario in which turbulence mediates this process by aggregating particles into anticyclonic regions. If, as our simulations suggest, anticyclonic vortices form as long-lived coherent structures, the process becomes more powerful because such vortices trap particles effectively. Even if the turbulence is decaying, following the upheaval that formed the disk, there is enough time to make the dust distribution quite lumpy.Comment: 16 pages, 9 figure

    Super-roughening as a disorder-dominated flat phase

    Get PDF
    We study the phenomenon of super-roughening found on surfaces growing on disordered substrates. We consider a one-dimensional version of the problem for which the pure, ordered model exhibits a roughening phase transition. Extensive numerical simulations combined with analytical approximations indicate that super-roughening is a regime of asymptotically flat surfaces with non-trivial, rough short-scale features arising from the competition between surface tension and disorder. Based on this evidence and on previous simulations of the two-dimensional Random sine-Gordon model [Sanchez et al., Phys. Rev. E 62, 3219 (2000)], we argue that this scenario is general and explains equally well the hitherto poorly understood two-dimensional case.Comment: 7 pages, 4 figures. Accepted for publication in Europhysics Letter

    Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds

    Full text link
    Observational data hints at a finite universe, with spherical manifolds such as the Poincare dodecahedral space tentatively providing the best fit. Simulating the physics of a model universe requires knowing the eigenmodes of the Laplace operator on the space. The present article provides explicit polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincare dodecahedral space S3/I*, the binary octahedral space S3/O*, the binary tetrahedral space S3/T*, the prism manifolds S3/D_m* and the lens spaces L(p,1).Comment: v3. Final published version. 27 pages, 1 figur

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope

    Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition

    Full text link
    As the glass (in molecular fluids\cite{Donth}) or the jamming (in colloids and grains\cite{LiuNature1998}) transitions are approached, the dynamics slow down dramatically with no marked structural changes. Dynamical heterogeneity (DH) plays a crucial role: structural relaxation occurs through correlated rearrangements of particle ``blobs'' of size ξ\xi\cite{WeeksScience2000,DauchotPRL2005,Glotzer,Ediger}. On approaching these transitions, ξ\xi grows in glass-formers\cite{Glotzer,Ediger}, colloids\cite{WeeksScience2000,BerthierScience2005}, and driven granular materials\cite{KeysNaturePhys2007} alike, strengthening the analogies between the glass and the jamming transitions. However, little is known yet on the behavior of DH very close to dynamical arrest. Here, we measure in colloids the maximum of a ``dynamical susceptibility'', χ\chi^*, whose growth is usually associated to that of ξ\xi\cite{LacevicPRE}. χ\chi^* initially increases with volume fraction ϕ\phi, as in\cite{KeysNaturePhys2007}, but strikingly drops dramatically very close to jamming. We show that this unexpected behavior results from the competition between the growth of ξ\xi and the reduced particle displacements associated with rearrangements in very dense suspensions, unveiling a richer-than-expected scenario.Comment: 1st version originally submitted to Nature Physics. See the Nature Physics website fro the final, published versio
    corecore