73 research outputs found

    Aphrati and Kato Syme: Pottery, Continuity, and Cult in Late Archaic and Classical Crete

    Get PDF
    The analysis of ceramics from Aphrati sheds valuable new light on the history of this Cretan settlement and on its relationship with a nearby rural sanctuary at Kato Syme in the Late Archaic and Classical periods. It has long been held that Aphrati was deserted from ca. 600 to 400 B.C. A pottery deposit from the domestic quarter, however, now supports occupation of the city during this period. A ceramic classification system is presented and the morphological development and absolute chronology of several key shapes at Aphrati and Kato Syme are plotted. Historical implications of the ceramic evidence are also explored

    Imaging in the time of NFD/NSF: do we have to change our routines concerning renal insufficiency?

    Get PDF
    To date there are potential chronology-based but not conclusive reasons to believe that at least some of the gadolinium complexes play a causative role in the pathophysiology of nephrogenic systemic fibrosis (NSF) or nephrogenic fibrosing dermopathy (NFD). Still, the exact pathogenesis and the risk for patients is unclear beside the obvious connection to moderate to severe renal insufficiency. So far, MR imaging with Gd-enhancement was regarded as the safest imaging modality in these patients—the recent development creates tremendous uncertainty in the MR-community. Nevertheless, one should remember that, despite the over 200 cases of NSF and about 100 with proven involvement of Gd3+, the vast majority of over 200 million patients exposed to gadolinium since the 1980s have tolerated these agents well. Importantly, NSF is a rare disease and does not appear to occur in patients without renal impairment. Many patients and researchers have undergone MR investigations with Gd exposure in the past. For those, it is essential to know about the safety of the agents at normal renal function. We can hope that pharmacoepidemiological and preclinical studies will allow us to better understand the pathophysiology and role of the various MR contrast agents in the near future

    Single Cell GFP-Trap Reveals Stoichiometry and Dynamics of Cytosolic Protein Complexes

    No full text
    We developed in situ single cell pull-down (SiCPull) of GFP-tagged protein complexes based on micropatterned functionalized surface architectures. Cells cultured on these supports are lysed by mild detergents and protein complexes captured to the surface are probed in situ by total internal reflection fluorescence microscopy. Using SiCPull, we quantitatively mapped the lifetimes of various signal transducer and activator of transcription complexes by monitoring dissociation from the surface and defined their stoichiometry on the single molecule level
    corecore