4 research outputs found

    COVID-19 risk stratification algorithms based on sTREM-1 and IL-6 in emergency department.

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic has led to surges of patients presenting to emergency departments (EDs) and potentially overwhelming health systems. We sought to assess the predictive accuracy of host biomarkers at clinical presentation to the ED for adverse outcome. Prospective observational study of PCR-confirmed COVID-19 patients in the ED of a Swiss hospital. Concentrations of inflammatory and endothelial dysfunction biomarkers were determined at clinical presentation. We evaluated the accuracy of clinical signs and these biomarkers in predicting 30-day intubation/mortality, and oxygen requirement by calculating the area under the receiver-operating characteristic curve and by classification and regression tree analysis. Of 76 included patients with COVID-19, 24 were outpatients or hospitalized without oxygen requirement, 35 hospitalized with oxygen requirement, and 17 intubated/died. We found that soluble triggering receptor expressed on myeloid cells had the best prognostic accuracy for 30-day intubation/mortality (area under the receiver-operating characteristic curve, 0.86; 95% CI, 0.77-0.95) and IL-6 measured at presentation to the ED had the best accuracy for 30-day oxygen requirement (area under the receiver-operating characteristic curve, 0.84; 95% CI, 0.74-0.94). An algorithm based on respiratory rate and sTREM-1 predicted 30-day intubation/mortality with 94% sensitivity and 0.1 negative likelihood ratio. An IL-6-based algorithm had 98% sensitivity and 0.04 negative likelihood ratio for 30-day oxygen requirement. sTREM-1 and IL-6 concentrations in COVID-19 in the ED have good predictive accuracy for intubation/mortality and oxygen requirement. sTREM-1- and IL-6-based algorithms are highly sensitive to identify patients with adverse outcome and could serve as early triage tools

    Modeling of the Coupling of Microstructure and Macrosegregation in a Direct Chill Cast Al-Cu Billet

    No full text
    This is a post-peer-review, pre-copyedit version of an article published in Metallurgical and Materials Transactions A. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11661-017-4238-zInternational audienceThe macroscopic multiphase flow and the growth of the solidification microstructures in the mushy zone of a direct chill (DC) casting are closely coupled. These couplings are the key to the understanding of the formation of the macrosegregation and of the nonuniform microstructure of the casting. In the present paper we use a multiphase and multiscale model to provide a fully coupled picture of the links between macrosegregation and microstructure in a DC cast billet. The model describes nucleation from inoculant particles and growth of dendritic and globular equiaxed crystal grains, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass, and solute mass transport, motion of free-floating equiaxed grains and of grain-refiner particles. We compare our simulations to experiments on grain-refined and non grain-refined industrial size billets from literature. We show that a transition between dendritic and globular grain morphology triggered by the grain refinement is the key to the explanation of the differences between the macrosegregation patterns in the two billets. We further show that the grain size and morphology are strongly affected by the macroscopic transport of free-floating equiaxed grains and of grain-refiner particles
    corecore