18,223 research outputs found

    Interpretation of the OGLE Q2237+0305 microlensing light-curve

    Get PDF
    The four bright images of the gravitationally lensed quasar Q2237+0305 are being monitored from the ground (eg. OGLE collaboration, Apache Point Observatory) in the hope of observing a high magnification event (HME). Over the past three seasons (1997-1999) the OGLE collaboration has produced microlensing light-curves with unprecedented coverage. These demonstrate smooth, independent (therefore microlensing) variability between the images (Wozniak et al. 2000a,b; OGLE web page). We have retrospectively compared probability functions for high-magnification event parameters with several observed light-curve features. We conclude that the 1999 image C peak was due to the source having passed outside of a cusp rather than to a caustic crossing. In addition, we find that the image C light-curve shows evidence for a caustic crossing between the 1997 and 1998 observing seasons involving the appearance of new critical images. Our models predict that the next image C event is most likely to arrive 500 days following the 1999 peak, but with a large uncertainty (100-2000 days). Finally, given the image A light-curve derivative at the end of the 1999 observing season, our modelling suggests that a caustic crossing will occur between the 1999 and 2000 observing seasons, implying a minimum for the image A light-curve ~1-1.5 magnitudes fainter than the November 1999 level.Comment: 11 pages, 15 figures. Accepted for publication in M.N.R.A.

    Interpretation of Solar Magnetic Field Strength Observations

    Full text link
    This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled in order to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have compared the synoptic program \lambda5250\AA line of Fe I to the line of Fe I at \lambda5233\AA since this latter line has a broad shape with a profile that is nearly linear over a large portion of its wings. The present study uses five pairs of sampling points on the λ5233\lambda5233\AA line. We recommend adoption of the field determined with a line bisector method with a sampling point as close as possible to the line core as the best estimate of the emergent photospheric flux. The combination of the line profile measurements and the cross-correlation of fields measured simultaneously with \lambda5250\AA and \lambda5233\AA yields a formula for the scale factor 1/\delta that multiplies the MWO synoptic magnetic fields. The new calibration shows that magnetic fields measured by the MDI system on the SOHO spacecraft are equal to 0.619+/-0.018 times the true value at a center-to-limb position 30 deg. Berger and Lites (2003) found this factor to be 0.64+/-0.013 based on a comparison the the Advanced Stokes Polarimeter.Comment: Accepted by Solar Physic

    Limits on the microlens mass function of Q2237+0305

    Get PDF
    Gravitational microlensing at cosmological distances is potentially a powerful tool for probing the mass functions of stars and compact objects in other galaxies. In the case of multiply-imaged quasars, microlensing data has been used to determine the average microlens mass. However the measurements have relied on an assumed transverse velocity for the lensing galaxy. Since the measured mass scales with the square of the transverse velocity, published mass limits are quite uncertain. In the case of Q2237+0305 we have properly constrained this uncertainty. The distribution of light curve derivatives allows quantitative treatment of the relative rates of microlensing due to proper motions of microlenses, the orbital stream motion of microlenses and the bulk galactic transverse velocity. By demanding that the microlensing rate due to the motions of microlenses is the minimum that should be observed we determine lower limits for the average mass of stars and compact objects in the bulge of Q2237+0305. If microlenses are assumed to move in an orbital stream the lower limit ranges between 0.005 and 0.023 solar masses where the the systematic dependence is due to the fraction of smooth matter and the size of photometric error assumed for published monitoring data. However, if the microlenses are assumed to move according to an isotropic velocity dispersion then a larger lower limit of 0.019-0.11 solar masses is obtained. A significant contribution of Jupiter mass compact objects to the mass distribution of the galactic bulge of Q2237+0305 is therefore unambiguously ruled out.Comment: 10 pages, 5 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Society. New version has improved presentatio

    A measurement of the transverse velocity of Q2237+0305

    Get PDF
    Determination of microlensing parameters in the gravitationally lensed quasar Q2237+0305 from the statistics of high magnification events will require monitoring for more than 100 years (Wambsganss, Paczynski & Schneider 1990). However we show that the effective transverse velocity of the lensing galaxy can be determined on a more realistic time-scale through consideration of the distribution of light-curve derivatives. The 10 years of existing monitoring data for Q2237+0305 are analysed. These data display strong evidence for microlensing that is not associated with a high magnification event. An upper limit of v < 500 km/sec is obtained for the galactic transverse velocity which is smaller than previously assumed values. The analysis suggests that the observed microlensing variation may be predominantly due to stellar proper motions. The statistical significance of the results obtained from our method will be increased by the addition of data points from current and future monitoring campaigns. However reduced photometric errors will be more valuable than an increased sampling rate.Comment: 16 pages, including 17 figures. Accepted for publication in M.N.R.A.

    Predicting caustic crossing high magnification events in Q2237+0305

    Full text link
    The central regions of the gravitationally lensed quasar Q2237+0305 can be indirectly resolved on nano-arcsecond scales if viewed spectrophotometricly during a microlensing high magnification event (HME). Q2237+0305 is currently being monitored from the ground (eg. OGLE collaboration, Apache Point Observatory), with the goal, among others, of triggering ground and spacecraft based target of opportunity (TOO) observations of an HME. In this work we investigate the rate of change (trigger) in image brightness that signals an imminent HME and importantly, the separation between the trigger and the event peak. In addition, we produce colour dependent model light-curves by combining high-resolution microlensing simulations with a realistic model for a thermal accretion disc source. We make hypothetical target of opportunity spectroscopic observations using our determination of the appropriate trigger as a guide. We find that if the source spectrum varies with source radius, a 3 observation TOO program should be able to observe a microlensing change in the continuum slope following a light-curve trigger with a success rate of >80%.Comment: 17 pages, 16 figures, accepted for publication in M.N.R.A.
    corecore