19,283 research outputs found

    Latest developments in cryogenic safety

    Get PDF
    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future

    Possible safety hazards associated with the operation of the 0.3-m transonic cryogenic tunnel at the NASA Langley Research Center

    Get PDF
    The 0.3 m Transonic Cryogenic Tunnel (TCT) at the NASA Langley Research Center was built in 1973 as a facility intended to be used for no more than 60 hours in order to verify the validity of the cryogenic wind tunnel concept at transonic speeds. The role of the 0.3 m TCT has gradually changed until now, after over 3000 hours of operation, it is classified as a major NASA research facility and, under the administration of the Experimental Techniques Branch, it is used extensively for the testing of airfoils at high Reynolds numbers and for the development of various technologies related to the efficient operation and use of cryogenic wind tunnels. The purpose of this report is to document the results of a recent safety analysis of the 0.3 m TCT facility. This analysis was made as part of an on going program with the Experimental Techniques Branch designed to ensure that the existing equipment and current operating procedures of the 0.3 m TCT facility are acceptable in terms of today's standards of safety for cryogenic systems

    Eliminating flutter for clamped von Karman plates immersed in subsonic flows

    Full text link
    We address the long-time behavior of a non-rotational von Karman plate in an inviscid potential flow. The model arises in aeroelasticity and models the interaction between a thin, nonlinear panel and a flow of gas in which it is immersed [6, 21, 23]. Recent results in [16, 18] show that the plate component of the dynamics (in the presence of a physical plate nonlinearity) converge to a global compact attracting set of finite dimension; these results were obtained in the absence of mechanical damping of any type. Here we show that, by incorporating mechanical damping the full flow-plate system, full trajectories---both plate and flow---converge strongly to (the set of) stationary states. Weak convergence results require "minimal" interior damping, and strong convergence of the dynamics are shown with sufficiently large damping. We require the existence of a "good" energy balance equation, which is only available when the flows are subsonic. Our proof is based on first showing the convergence properties for regular solutions, which in turn requires propagation of initial regularity on the infinite horizon. Then, we utilize the exponential decay of the difference of two plate trajectories to show that full flow-plate trajectories are uniform-in-time Hadamard continuous. This allows us to pass convergence properties of smooth initial data to finite energy type initial data. Physically, our results imply that flutter (a non-static end behavior) does not occur in subsonic dynamics. While such results were known for rotational (compact/regular) plate dynamics [14] (and references therein), the result presented herein is the first such result obtained for non-regularized---the most physically relevant---models

    Improved calorimeter provides accurate thermal measurements of space batteries

    Get PDF
    Isothermal continuous flow calorimeter measures the thermal characteristics of space batteries undergoing typical orbital cycling. This is 28 times as sensitive as calorimeters previously used

    Flow-plate interactions: Well-posedness and long-time behavior

    Full text link
    We consider flow-structure interactions modeled by a modified wave equation coupled at an interface with equations of nonlinear elasticity. Both subsonic and supersonic flow velocities are treated with Neumann type flow conditions, and a novel treatment of the so called Kutta-Joukowsky flow conditions are given in the subsonic case. The goal of the paper is threefold: (i) to provide an accurate review of recent results on existence, uniqueness, and stability of weak solutions, (ii) to present a construction of finite dimensional, attracting sets corresponding to the structural dynamics and discuss convergence of trajectories, and (iii) to state several open questions associated with the topic. This second task is based on a decoupling technique which reduces the analysis of the full flow-structure system to a PDE system with delay.Comment: 1 figure. arXiv admin note: text overlap with arXiv:1208.5245, arXiv:1311.124

    Heater improves cold-temperature capacity of silver-cadmium batteries

    Get PDF
    Eight heaters are included in 14-cell package to provide 14-Vdc. Each heater is 11-ohm self-adhesive strip placed across broad face of each pair of cells. They are installed before cells are wired. Heaters are in series and are connected through pair of redundant thermostats

    Experimental investigation of outdoor propagation of finite-amplitude noise

    Get PDF
    The outdoor propagation of finite amplitude acoustic waves was investigated using a conventional electroacoustic transmitter which was mounted on the ground and pointed upward in order to avoid ground reflection effects. The propagation path was parallel to a radio tower 85 m tall, whose elevator carried the receiving microphone. The observations and conclusions are as follows: (1) At the higher source levels nonlinear propagation distortion caused a strong generation of high frequency noise over the propagation path. For example, at 70 m for a frequency 2-3 octaves above the source noise band, the measured noise was up to 30 dB higher than the linear theory prediction. (2) The generation occurred in both the nearfield and the farfield of the transmitter. (3) At no measurement point was small-signal behavior established for the high requency noise. Calculations support the contention that the nonlinearity generated high frequency noise never becomes small-signal in its behavior, regardless of distance. (4) When measured spectra are scaled in frequency and level to make them comparable with spectra of actual jet noise, they are found to be well within the jet noise range. It is therefore entirely possible that nonlinear distortion affects jet noise
    corecore