34 research outputs found
Metabolite profiling of antidepressant drug action reveals novel drug targets beyond monoamine elevation
Currently used antidepressants elevate monoamine levels in the synaptic cleft. There is good reason to assume that this is not the only source for antidepressant therapeutic activities and that secondary downstream effects may be relevant for alleviating symptoms of depression. We attempted to elucidate affected biochemical pathways downstream of monoamine reuptake inhibition by interrogating metabolomic profiles in DBA/2Ola mice after chronic paroxetine treatment. Metabolomic changes were investigated using gas chromatography-mass spectrometry profiling and group differences were analyzed by univariate and multivariate statistics. Pathways affected by antidepressant treatment were related to energy metabolism, amino acid metabolism and hormone signaling. The identified pathways reveal further antidepressant therapeutic action and represent targets for drug development efforts. A comparison of the central nervous system with blood plasma metabolite alterations identified GABA, galactose-6-phosphate and leucine as biomarker candidates for assessment of antidepressant treatment effects in the periphery
Establishment of a 3D In Vitro Model to Accelerate the Development of Human Therapies against Corneal Diabetes
The authors thank Dr. John M Asara, Min Yuan, and Susanne Breitkopf for their technical help with metabolomics experiments, Dr. Ben Fowler for his technical help with TEM experiments and also Tina B McKay for many thoughtful discussions and scientific insights during the study.Purpose To establish an in vitro model that would mirror the in vivo corneal stromal environment in diabetes (DM) patients. Methods Human corneal fibroblasts from Healthy (HCFs), Type 1DM (T1DM) and Type 2DM (T2DM) donors were isolated and cultured for 4 weeks with Vitamin C stimulation in order to allow for extracellular matrix (ECM) secretion and assembly. Results Our data indicated altered cellular morphology, increased cellular migration, increased ECM assembly, and severe mitochondrial damage in both T1DM and T2DMs when compared to HCFs. Furthermore, we found significant downregulation of Collagen I and Collagen V expression in both T1DM and T2DMs. Furthermore, a significant up regulation of fibrotic markers was seen, including α-smooth muscle actin in T2DM and Collagen III in both T1DM and T2DMs. Metabolic analysis suggested impaired Glycolysis and Tricarboxylic acid cycle (TCA) pathway. Conclusion DM has significant effects on physiological and clinical aspects of the human cornea. The benefits in developing and fully characterizing our 3D in vitro model are enormous and might provide clues for the development of novel therapeutics.Yeshttp://www.plosone.org/static/editorial#pee
Variability assessment of N-15 metabolic labeling-based proteomics workflow in mouse plasma and brain
N-15 metabolic labeling-based quantitative proteomics is used for the identification of disease-and phenotype-related alterations in live organisms. The variability of N-15 metabolic labeling proteomics workflows has been assessed in plants and bacteria. However, no study has addressed this topic in mice. We have investigated the repeatability of a quantitative in vivo N-15 metabolic labeling proteomics workflow in mice by assessing LC variability, peptide and protein profiling characteristics and overall N-15/N-14 protein quantification accuracy in technical replicates of plasma and brain specimens. We furthermore examined how sample preparation affects these parameters in plasma and brain. We found that specimen type (i.e. plasma or brain) influences the variability of the N-15 metabolic labeling workflow in an LC-independent manner
Stable isotope metabolic labeling suggests differential turnover of the DPYSL protein family
PURPOSE: In this work, we discuss how in vivo (15) N metabolic labeling in combination with MS simultaneously provides information on protein expression and protein turnover. EXPERIMENTAL DESIGN: We metabolically labeled mice with the stable nitrogen isotope (15) N using a (15) N-enriched diet and analyzed unlabeled ((14) N) versus (15) N-labeled brain tissue with LC-MS/MS. We then compared the (14) N versus (15) N peptide isotopologue clusters of (14) N and (15) N-labeled dihydropyrimidinase-related (DPYSL) proteins. RESULTS: We present a workflow assessing protein expression and turnover at different time points of mouse brain development. Our data demonstrate distinct protein turnover patterns of DPYSL3 and DPYSL5 compared to other quantified proteins. We report the presence of two DPYSL3 and DPYSL5 populations with different (15) N incorporation rates, indicating altered protein turnover during development. CONCLUSIONS AND CLINICAL RELEVANCE: In vivo (15) N metabolic labeling allows the simultaneous investigation of protein expression and turnover, enabling detailed protein dynamics studies. We report for the first time protein turnover data for the DPYSL2, DPYSL3, and DPYSL5 protein family members. As DPYSL proteins have important functions for nervous system maturation, our data provide useful information on their molecular fate during brain development
Antidepressant treatment effects on hippocampal protein turnover: Molecular and spatial insights from mass spectrometry
A major challenge in managing depression is that antidepressant drugs take a long time to exert their therapeutic effects. For the development of faster-acting treatments, it is crucial to get an improved understanding of the molecular mechanisms underlying antidepressant mode of action. Here, we used a novel mass spectrometry-based workflow to investigate how antidepressant treatment affects brain protein turnover at single-cell and subcellular resolution. We combined stable isotope metabolic labeling, quantitative Tandem Mass Spectrometry (qTMS) and Multi-isotope Imaging Mass Spectrometry (MIMS) to simultaneously quantify and image protein synthesis and turnover in hippocampi of mice treated with the antidepressant paroxetine. We identified changes in turnover of individual hippocampal proteins that reveal altered metabolism-mitochondrial processes and report on subregion-specific turnover patterns upon paroxetine treatment. This workflow can be used to investigate brain protein turnover changes in vivo upon pharmacological interventions at a resolution and precision that has not been possible with other methods to date. Our results reveal acute paroxetine effects on brain protein turnover and shed light on antidepressant mode of action
Fluoxetine Treatment Rescues Energy Metabolism Pathway Alterations in a Posttraumatic Stress Disorder Mouse Model.
Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder. Several studies have attempted to characterize molecular alterations associated with PTSD, but most findings were limited to the investigation of specific cellular markers in the periphery or defined brain regions. In the current study, we aimed to unravel affected molecular pathways/mechanisms in the fear circuitry associated with PTSD. We interrogated a foot shock-induced PTSD mouse model by integrating proteomics and metabolomics profiling data. Alterations at the proteome level were analyzed using in vivo (15)N metabolic labeling combined with mass spectrometry in the prelimbic cortex (PrL), anterior cingulate cortex (ACC), basolateral amygdala, central nucleus of the amygdala and CA1 of the hippocampus between shocked and nonshocked (control) mice, with and without fluoxetine treatment. In silico pathway analyses revealed an upregulation of the citric acid cycle pathway in PrL, and downregulation in ACC and nucleus accumbens (NAc). Chronic fluoxetine treatment prevented decreased citric acid cycle activity in NAc and ACC and ameliorated conditioned fear response in shocked mice. Our results shed light on the role of energy metabolism in PTSD pathogenesis and suggest potential therapy through mitochondrial targeting