57,804 research outputs found

    Equation of State in 2+1 Flavor QCD at High Temperatures

    Full text link
    We calculate the Equation of State at high temperatures in 2+1 flavor QCD using the highly improved staggered quark action. We study the lattice spacing dependence of the pressure at high temperatures using lattices with temporal extent Nτ=6, 8, 10N_{\tau}=6,~8,~10 and 1212 and perform continuum extrapolations. We also give a continuum estimate for the Equation of State up to temperatures T=2T=2 GeV, which are then compared with results of the weak-coupling calculations. We find a reasonably good agreement with the weak-coupling calculations at the highest temperatures.Comment: RevTeX, 16 pages, 16 figures, published versio

    Dependence of the thermoluminescent high-temperature ratio (HTR) of LiF:Mg,Ti detectors on proton energy and dose

    Full text link
    The high-temperature ratio (HTR) is a parameter quantifying changes of the shape of the high-temperature part of the LiF:Mg,Ti glow-curve after exposure to densely ionizing radiation. It was introduced in order to estimate the effective LET of an unknown radiation field and to correct the decreased relative TL efficiency for high Linear Energy Transfer (LET) radiation. In the present work the dependence of HTR on proton energy (14.5 to 58 MeV) and dose (0.5 to 30 Gy) was investigated. All measured HTR values were at the level of 1.2 or higher, therefore significantly different from the respective value for gamma rays (HTR is equal to 1), but HTR was found to be insensitive to changes of proton energy above 20 MeV. As a result the relationship between HTR and relative TL efficiency is not unequivocal. The HTR was found to be dependent on absorbed dose even for the lowest studied doses.Comment: Manuscript has been presented at the 17th International Conference on Solid State Dosimetry, Recife, Brasil, September 22-27,201

    Aerodynamic influence coefficient method using singularity splines

    Get PDF
    A numerical lifting surface formulation, including computed results for planar wing cases is presented. This formulation, referred to as the vortex spline scheme, combines the adaptability to complex shapes offered by paneling schemes with the smoothness and accuracy of loading function methods. The formulation employes a continuous distribution of singularity strength over a set of panels on a paneled wing. The basic distributions are independent, and each satisfied all the continuity conditions required of the final solution. These distributions are overlapped both spanwise and chordwise. Boundary conditions are satisfied in a least square error sense over the surface using a finite summing technique to approximate the integral. The current formulation uses the elementary horseshoe vortex as the basic singularity and is therefore restricted to linearized potential flow. As part of the study, a non planar development was considered, but the numerical evaluation of the lifting surface concept was restricted to planar configurations. Also, a second order sideslip analysis based on an asymptotic expansion was investigated using the singularity spline formulation

    The 'gated-diode' configuration in MOSFET's, a sensitive tool for characterizing hot-carrier degradation

    Get PDF
    This paper describes a new measurement technique, the forward gated-diode current characterized at low drain voltages to be applied in MOSFET's for investigating hot-carrier stress-induced defects at high spatial resolution. The generation/recombination current in the drain-to-substrate diode as a function of gate voltage, combined with two-dimensional numerical simulation, provides a sensitive tool for detecting the spatial distribution and density of interface defects. In the case of strong accumulation, additional information is obtained from interband tunneling processes occurring via interface defects. The various mechanisms for generating interface defects and fixed charges at variable stress conditions are discussed, showing that information complementary to that available from other methods is obtaine

    Analysis of aggregated tick returns: evidence for anomalous diffusion

    Full text link
    In order to investigate the origin of large price fluctuations, we analyze stock price changes of ten frequently traded NASDAQ stocks in the year 2002. Though the influence of the trading frequency on the aggregate return in a certain time interval is important, it cannot alone explain the heavy tailed distribution of stock price changes. For this reason, we analyze intervals with a fixed number of trades in order to eliminate the influence of the trading frequency and investigate the relevance of other factors for the aggregate return. We show that in tick time the price follows a discrete diffusion process with a variable step width while the difference between the number of steps in positive and negative direction in an interval is Gaussian distributed. The step width is given by the return due to a single trade and is long-term correlated in tick time. Hence, its mean value can well characterize an interval of many trades and turns out to be an important determinant for large aggregate returns. We also present a statistical model reproducing the cumulative distribution of aggregate returns. For an accurate agreement with the empirical distribution, we also take into account asymmetries of the step widths in different directions together with crosscorrelations between these asymmetries and the mean step width as well as the signs of the steps.Comment: 9 pages, 10 figures, typos correcte

    Heavy-fermion metals with hybridization nodes: Unconventional Fermi liquids and competing phases

    Full text link
    Microscopic models for heavy-fermion materials often assume a local, i.e., momentum-independent, hybridization between the conduction band and the local-moment f electrons. Motivated by recent experiments, we consider situations where this neglect of momentum dependence is inappropriate, namely when the hybridization function has nodes in momentum space. We explore the thermodynamic and optical properties of the highly anisotropic heavy Fermi liquid, resulting from Kondo screening in a higher angular-momentum channel. The dichotomy in momentum space has interesting consequences: While e.g. the low-temperature specific heat is dominated by heavy quasiparticles, the electrical conductivity at intermediate temperatures is carried by unhybridized light electrons. We then discuss aspects of the competition between Kondo effect and ordering phenomena induced by inter-moment exchange: We propose that the strong momentum-space anisotropy plays a vital role in selecting competing phases. Explicit results are obtained for the interplay of unconventional hybridization with unconventional, magnetically mediated, superconductivity, utilizing variants of large-N mean-field theory. We make connections to recent experiments on CeCoIn5 and other heavy-fermion materials.Comment: 16 pages, 8 figs, (v2) remark on Wiedemann-Franz added, small changes, final version as publishe

    Multiferroicity and colossal magneto-capacitance in Cr-thiospinels

    Full text link
    The sulfur based Cr-spinels RCr2S4 with R = Cd and Hg exhibit the coexistence of ferromagnetic and ferroelectric properties together with a pronounced magnetocapacitive coupling. While in CdCr2S4 purely ferromagnetic order is established, in HgCr2S4 a bond-frustrated magnetic ground state is realized, which, however, easily can be driven towards a ferromagnetic configuration in weak magnetic fields. This paper shall review our recent investigation for both compounds. Besides the characterization of the magnetic properties, the complex dielectric permittivity was studied by means of broadband dielectric spectroscopy as well as measurements of polarization hysteresis and pyro-currents. The observed colossal magneto-capacitive effect at the magnetic transition seems to be driven by an enormous variation of the relaxation dynamics.Comment: 10 pages, 11 figure

    Multiferroic behavior in CdCr2X4 (X = S, Se)

    Full text link
    The recently discovered multiferroic material CdCr2S4 shows a coexistence of ferromagnetism and relaxor ferroelectricity together with a colossal magnetocapacitive effect. The complex dielectric permittivity of this compound and of the structurally related CdCr2Se4 was studied by means of broadband dielectric spectroscopy using different electrode materials. The observed magnetocapacitive coupling at the magnetic transition is driven by enormous changes of the relaxation dynamics induced by the development of magnetic order
    • …
    corecore