199 research outputs found

    Planetary Seismology

    Get PDF
    Of the many geophysical means that can be used to probe a planet's interior, seismology remains the most direct. In addition to Earth, seismometers have been installed on Venus, Mars, and the Moon. Given that the seismic data gathered on the Moon (now over 40 years ago) revolutionized our understanding of the Moon and are still being used today to produce new insight into the state of the lunar interior, it is no wonder that many future missions, both real and conceptual, plan to take seismometers to other planets. To best facilitate the return of high-quality data from these instruments, as well as to further our understanding of the dynamic processes that modify a planet's interior, various modeling approaches are used to quantify parameters such as the amount and distribution of seismicity, tidal deformation, and seismic structure of the terrestrial planets. In addition, recent advances in wavefield modeling have permitted a renewed look at seismic energy transmission and the effects of attenuation and scattering, as well as the presence and effect of a core, on recorded seismograms. In this talk I will discuss some of these methods and review the history of planetary seismology

    Recovery of Deep Moonquake Focal Mechanisms

    Get PDF
    Deep moonquakes are clustered not only in space but also in time: their recurrence times correspond to the durations of the anomalistic and draconic months, with some clusters preferring one of the two periods, while others are active with both periods. A key constraint for the understanding of the connection between the orbital motion of the Moon and its seismic activity is the focal mechanism: the orientation of the fault surface on which failure occurs during the quake. Due to the small aperture of the Apollo seismic network and the strong scattering of seismic waves within the lunar crust, the evaluation of P wave first motions to constrain the strike and dip of the fault planes is not feasible. Instead we evaluate the amplitude ratios of P and S waves. Seismograms are rotated into the P-SV-SH coordinate frame and amplitudes are determined as averages over short time windows after the arrival to reduce the impact of the scattering coda, which is independent of the source orientation. We allow for reversals of the fault motion, as observed for some clusters in previous studies, by taking into account the absolute amplitude only, without sign. An empirical site correction factor is applied to correct for amplitude distortions in the crust. We construct ensembles of fault plane solutions using an exhaustive grid search by accepting all orientations that reproduce the measured amplitude ratios within the observed standard deviations. Since all events of a given cluster are supposed to share the same fault plane, the combination of the individual inversion results further constrains the orientation. We evaluate 106 events from 25 different moonquake clusters. The most active cluster A001 contributes 37 events, while others contribute 1 to 9 events per cluster. Comparison of fault orientations with the variation of the tidal stress results in preferred orientations

    GRAIL Refinements to Lunar Seismic Structure

    Get PDF
    Joint interpretation of disparate geophysical datasets helps reduce drawbacks that can result from analyzing them individually. The Apollo seismic network was situated on the lunar nearside surface in a roughly equilateral triangle having sides approximately 1000 km long, with stations 12/14 nearly co-located at one corner. Due to this limited geographical extent, near-surface ray coverage from moonquakes is low, but increases with depth. In comparison, gravity surveys and their resulting gravity anomaly maps have traditionally offered optimal resolution at crustal depths. Gravimetric maps and seismic data sets are therefore well suited to joint inversion, since the complementary information reduces inherent model ambiguity. Previous joint inversions of the Apollo seismic data (seismic phase arrival times) and Clementine- or Lunar Prospector-derived gravity data (mass and moment of inertia) attempted to recover the subsurface structure of the Moon by focusing on hypothetical lunar compositions that explored the density/velocity relationship. These efforts typically searched for the best fitting thermodynamically calculated velocity/density model, and allowed variables like core size, velocity, and/or composition to vary freely. Seismic velocity profiles derived from the Apollo seismic data through travel time inversion vary both in the depth of the crust and mantle layers, and the seismic velocities and densities assigned to those layers. The lunar mass and moment of inertia likewise only constrain gross variations in the density profile beyond that of a uniform density sphere. As a result, composition and structure models previously obtained by jointly inverting these data retain the original uncertainties inherent in the input data sets. We perform a joint inversion of Apollo seismic delay times and gravity data collected by the GRAIL lunar gravity mission, in order to recover seismic velocity and density as a function of latitude, longitude, and depth within the Moon. We relate density (p) to seismic velocity (v) using a depth-dependent linear relationship. The corresponding coefficient (B) can reflect a variety of material properties, including temperature and composition. The inversion seeks to recover the set of p, v, and B perturbations that minimize (in a least-squares sense) the difference between the observed and calculated data

    Grail Refinements to Lunar Seismic Structure

    Get PDF
    To probe a planet's interior, seismology provides the most direct constraints on the variables that govern the dynamic properties of the body. However, the GRAIL (Gravity Recovery and Interior Laboratory) mission's high-resolution measurements of the lunar gravity field provide constraints on crustal thickness, mantle structure, core radius and stratification, and core state (solid vs. molten). These data complement seismic investigations, and joint interpretation permits improved constraints on the Moon's internal structure. Joint interpretation of disparate geophysical datasets helps reduce drawbacks that can result from analyzing them individually. The Apollo seismic network was situated on the lunar nearside surface in a roughly equilateral triangle having sides approximately 1000 km long, with stations 12/14 nearly co-located at one corner. Due to this limited geographical extent, near-surface ray coverage from moonquakes is low, but increase with depth. In comparison, gravity surveys and their resulting gravity anomaly maps have traditionally offered optimal resolution at crustal depths. Gravimetric maps and seismic data sets are therefor well suited to joint inversion, since the complementary information reduces inherent model ambiguity. We will perform a joint inversion of Apollo seismic delay times and gravity data collected by GRAIL lunar gravity mission, in order to recover seismic velocity and density as a function of latitude, longitude and depth within the Moon. We will relate density (rho) to seismic velocity (v) using a linear relationship that is allowed to be depth-dependent. The corresponding coefficient (B) can reflect a variety of material properties that vary with depth, including temperature and composition. The inversion seeks to recover the set of rho, v, and B perturbations that minimize (in a least-squares sense) the difference between the observed and calculated data

    GRAIL Refinements to Lunar Seismic Structure

    Get PDF
    Joint interpretation of disparate geophysical datasets helps to reduce drawbacks that can result from analyzing them individually. The Apollo seismic network was situated on the lunar nearside surface in a roughly equilateral triangle having sides approximately 1000 km long, with stations 12/14 nearly colocated at one corner. Due to this limited geographical extent, nearsurface ray coverage from moonquakes is low, but increases with depth. In comparison, gravity surveys and their resulting gravity anomaly maps have traditionally offered optimal resolution at crustal depths. Gravimetric maps and seismic data sets are therefore well suited to joint inversion, since the complementary information reduces inherent model ambiguity. Previous joint inversions of the Apollo seismic data (seismic phase arrival times) and Clementine or Lunar Prospectorderived gravity data (mass and moment of inertia) attempted to recover the subsurface structure of the Moon by focusing on hypothetical lunar compositions that explore the density/velocity relationship. These efforts typically search for the best fitting thermodynamically calculated velocity/density model, allowing variables like core size, velocity, and/or composition to vary freely. Seismic velocity profiles previously derived from the Apollo seismic data through inversion of travel times vary both in the depth of the crust and mantle layers, and the seismic velocities and densities assigned to those layers. The lunar mass and moment of inertia likewise only constrain gross variations in the density profile beyond that of a uniform density sphere. As a result, composition and structure models previously obtained by jointly inverting these data retain the original uncertainties inherent in the input data sets. We will perform a joint inversion of Apollo seismic delay times and gravity data collected by the GRAIL lunar gravity mission, in order to recover seismic velocities and density as a function of latitude, longitude, and depth within the Moon. We will relate density to seismic velocity using a linear relationship that is allowed to be depthdependent. The corresponding coefficient (B) can reflect a variety of material properties that vary with depth, including temperature and composition. The inversion seeks to recover the set of density, velocity, and Bcoefficient perturbations that minimize (in a leastsquares sense) the difference between the observed and calculated data

    Deep Moonquake Focal Mechanisms: Recovery and Implications

    Get PDF
    A defining characteristic of deep moonquakes is their tendency to occur with tidal periodicity, prompting previous studies to infer that they are related to the buildup and release of tidal stress within the Moon. In studies of tidal forcing, a key constraint is the focal mechanism: the fault parameters describing the type of failure moonquakes represent. The quality of the lunar seismic data and the limited source/receiver geometries of the Apollo seismic network prohibit the determination of deep moonquake fault parameters using first-motion polarities, as is typically done in terrestrial seismology. Without being able to resolve tidal stress onto a known failure plane, we can examine only gross qualities of the tidal stress tensor with respect to moonquake occurrence, so we cannot fully address the role of tidal stress in moonquake generation. We will examine the extent to which shear (S) and compression (P) wave amplitude ratios can constrain moonquake fault geometry by determining whether, for a given cluster, there exists a focal mechanism that can produce a radiation pattern consistent with the amplitudes measured by the Apollo instruments. Amplitudes are read in the ray coordinate frame, directly from seismograms for which the P and S arrivals are clearly identifiable on all long-period channels of the four Apollo stations. We apply an empirical station correction to account for site effects and the differences between P- and S-wave attenuation. Instead of focusing on the best fitting solution only, we formulate the inverse problem using a falsification criterion: all source orientations that do not reproduce the observed SV/P ratios within an error margin derived from the uncertainty of amplitude readings are rejected. All others are accepted as possible solutions. The inversion is carried out using an exhaustive grid search on a regular grid with predefined step size, encompassing all possible combinations of strike, dip and slip. To assess the sensitivity of the inversion for the uncertainty of the lunar interior structure, we carry out repeated inversions with different velocity structures. Our data set consist of a total of 106 events from 25 deep moonquake clusters. The largest contribution of 37 events originates from the most active cluster, A001, while other clusters are represented by 1 to 9 events. Since the definition of a cluster implies that all events share the same source orientation, a comparison of the inversion results of all events from one cluster will reduce ambiguities of the inversion. Once we obtain a suite of fault parameters for a given source, we can attempt to further constrain the focal mechanism with refined analyses of tidal stresses and predictions based on synthetic seismograms

    Further Constraints and Uncertainties on the Deep Seismic Structure of the Moon

    Get PDF
    The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972, that continuously recorded lunar ground motion until late 1977. The APSE data provide a unique opportunity for investigating the interior of a planet other than Earth, generating the most direct constraints on the elastic structure, and hence the thermal and compositional evolution of the Moon. Owing to the lack of far side moonquakes, past seismic models of the lunar interior were unable to constrain the lowermost 500 km of the interior. Recently, array methodologies aimed at detecting deep lunar seismic reflections found evidence for a lunar core, providing an elastic model of the deepest lunar interior consistent with geodetic parameters. Here we study the uncertainties in these models associated with the double array stacking of deep moonquakes for imaging deep reflectors in the Moon. We investigate the dependency of the array stacking results on a suite of parameters, including amplitude normalization assumptions, polarization filters, assumed velocity structure, and seismic phases that interfere with our desired target phases. These efforts are facilitated by the generation of synthetic seismograms at high frequencies (approx. 1Hz), allowing us to directly study the trade-offs between different parameters. We also investigate expected amplitudes of deep reflections relative to direct P and S arrivals, including predictions from arbitrarily oriented focal mechanisms in our synthetics. Results from separate versus combined station stacking help to establish the robustness of stacks. Synthetics for every path geometry of data were processed identically to that done with data. Different experiments were aimed at examining various processing assumptions, such as adding random noise to synthetics and mixing 3 components to some degree. The principal stacked energy peaks put forth in recent work persist, but their amplitude (which maps into reflector impedance contrast) and timing (which maps into reflector depth) depend on factors that are not well constrained -- most notably, the velocity structure of the overlying lunar interior. Thus, while evidence for the lunar core remains strong, the depths of imaged reflectors have associated uncertainties that will require new seismic data and observations to constrain. These results strongly advocate further investigations on the Moon to better resolve the interior (e.g., Selene missions), for the Moon apparently has a rich history of construction and evolution that is inextricably tied to that of Earth
    corecore