297 research outputs found
Can motto-goals outperform learning and performance goals? Influence of goal setting on performance and affect in a complex problem solving task
In this paper, we bring together research on complex problem solving with that on motivational psychology about goal setting. Complex problems require motivational effort because of their inherent difficulties. Goal Setting Theory has shown with simple tasks that high, specific performance goals lead to better performance outcome than do-your-best goals. However, in complex tasks, learning goals have proven more effective than performance goals. Based on the Zurich Resource Model, so-called motto-goals should activate a person’s resources through positive affect. It was found that motto-goals are effective with unpleasant duties. Therefore, we tested the hypothesis that motto-goals outperform learning and performance goals in the case of complex problems. A total of N = 123 subject participated in the experiment. In dependence of their goal condition, subjects developed a personal motto, learning, or performance goal. This goal was adapted for the computer-simulated complex scenario Tailorshop, where subjects worked as managers in a small fictional company. Other than expected, there was no main effect of goal condition for the management performance. An unexpected gender effect revealed better performance for men than women, pointing to a potential stereotype threat. As hypothesized, motto goals led to higher positive and lower negative affect than the other two goal types. Even though positive affect decreased and negative affect increased in all three groups during Tailorshop completion, participants with motto goals reported the lowest rates of negative affect. Exploratory analyses investigated the role of affect in complex problem solving via mediational analyses and the influence of goal type on perceived goal attainment
Renal developmental genes are differentially regulated after unilateral ureteral obstruction in neonatal and adult mice
Congenital obstructive nephropathy hinders normal kidney development. The severity and the duration of obstruction determine the compensatory growth of the contralateral, intact opposite kidney. We investigated the regulation of renal developmental genes, that are relevant in congenital anomalies of the kidney and urinary tract (CAKUT) in obstructed and contralateral (intact opposite) kidneys after unilateral ureteral obstruction (UUO) in neonatal and adult mice. Newborn and adult mice were subjected to complete UUO or sham-operation, and were sacrificed 1, 5, 12 and 19 days later. Quantitative RT-PCR was performed in obstructed, intact opposite kidneys and sham controls for Gdnf, Pax2, Six4, Six2, Dach1, Eya1, Bmp4, and Hnf-1 beta. Neonatal UUO induced an early and strong upregulation of all genes. In contrast, adult UUO kidneys showed a delayed and less pronounced upregulation. Intact opposite kidneys of neonatal mice revealed a strong upregulation of all developmental genes, whereas intact opposite kidneys of adult mice demonstrated only a weak response. Only neonatal mice exhibited an increase in BMP4 protein expression whereas adult kidneys strongly upregulated phosphatidylinositol 3 kinase class III, essential for compensatory hypertrophy. In conclusion, gene regulation differs in neonatal and adult mice with UUO. Repair and compensatory hypertrophy involve different genetic programs in developing and adult obstructed kidneys
Clinical outcome after particle therapy for meningiomas of the skull base: toxicity and local control in patients treated with active rasterscanning
Background: Meningiomas of the skull base account for 25–30% of all meningiomas. Due to the complex structure of the cranial base and its close proximity to critical structures, surgery is often associated with substantial morbidity. Treatment options include observation, aggressive surgical intervention, stereotactic or conventional radiotherapy. In this analysis we evaluate the outcome of 110 patients with meningiomas of the skull base treated with particle therapy. It was performed within the framework of the “clinical research group heavy ion therapy” and supported by the German Research Council (DFG, KFO 214).
Methods: Between May 2010 and November 2014, 110 Patients with skull base meningioma were treated with particle radiotherapy at the Heidelberg Ion Therapy Center (HIT). Primary localizations included the sphenoid wing (n = 42), petroclival region (n = 23), cavernous sinus (n = 4), sella (n = 10) and olfactory nerve (n = 4). Sixty meningiomas were benign (WHO °I); whereas 8 were high-risk (WHO °II (n = 7) and °III (n = 1)). In 42 cases histology was not examined, since no surgery was performed. Proton (n = 104) or carbon ion (n = 6) radiotherapy was applied at Heidelberg Ion Therapy Center (HIT) using raster-scanning technique for active beam delivery. Fifty one patients (46.4%) received radiotherapy due to tumor progression, 17 (15.5%) after surgical resection and 42 (38.2%) as primary treatment.
Results: Median follow-up in this analysis was 46,8 months (95% CI 39,9–53,7; Q1-Q3 34,3–61,7). Particle radiotherapy could be performed safely without toxicity-related interruptions. No grade IV or V toxicities according to CTCAE v4.0 were observed. Particle RT offered excellent overall local control rates with 100% progression-free survival (PFS) after 36 months and 96.6% after 60 months. Median PFS was not reached due to the small number of events. Histology significantly impacted PFS with superior PFS after 5 years for low-risk tumors (96.6% vs. 75.0%, p = 0,02). Overall survival was 96.2% after 60 months and 92.0% after 72 months from therapy. Of six documented deaths, five were definitely not and the sixth probably not meningioma-related. Conclusion Particle radiotherapy is an excellent treatment option for patients with meningiomas of the skull base and can lead to long-term tumor control with minimal side effects. Other prospective studies with longer follow-up will be necessary to further confirm the role of particle radiotherapy in skull base meningioma
Evaluation of particle radiotherapy for the re-irradiation of recurrent intracranial meningioma
Background: With the advance of modern irradiation techniques, the role of radiotherapy (RT) for intracranial meningioma has increased significantly throughout the past years. Despite that tumor’s generally favorable outcome with local control rates of up to 90% after ten years, progression after RT does occur. In those cases, re-irradiation is often difficult due to the limited radiation tolerance of the surrounding tissue. The aim of this analysis is to determine the value of particle therapy with its better dose conformity and higher biological efficacy for re-irradiating recurrent intracranial meningioma. It was performed within the framework of the “clinical research group heavy ion therapy” and funded by the German Research Council (DFG, KFO 214).
Methods: Forty-two patients treated with particle RT (protons (n = 8) or carbon ions (n = 34)) for recurrent intracranial meningioma were included in this analysis. Location of the primary lesion varied, including skull base (n = 31), convexity (n = 5) and falx (n = 6). 74% of the patients were categorized high-risk according to histology with a WHO grading of II (n = 25) or III (n = 6), in the remaining cases histology was either WHO grade I (n = 10) or unknown (n = 1). Median follow-up was 49,7 months.
Results: In all patients, re-irradiation could be performed safely without interruptions due to side effects. No grade IV or V toxicities according to CTCAE v4.0 were observed. Particle RT offered good overall local control rates with 71% progression-free survival (PFS) after 12 months, 56,5% after 24 months and a median PFS of 34,3 months (95% CI 11,7–56,9). Histology had a significant impact on PFS yielding a median PFS of 25,7 months (95% CI 5,8–45,5) for high-risk histology (WHO grades II and III) while median PFS was not reached for low-risk tumors (WHO grade I) (p = 0,03). Median time to local progression was 15,3 months (Q1-Q3 8,08–34,6). Overall survival (OS) after re-irradiation was 89,6% after 12 months and 71,4% after 24 months with a median OS of 61,0 months (95% CI 34,2–87,7). Again, WHO grading had an effect, as median OS for low-risk patients was not reached whereas for high-risk patients it was 45,5 months (95% CI 35,6–55,3).
Conclusion: Re-irradiation using particle therapy is an effective method for the treatment of recurrent meningiomas. Interdisciplinary decision making is necessary to guarantee best treatment for every patient
- …