137 research outputs found

    Impact of SARS-CoV-2 infection during pregnancy on postnatal brain development : the potential role of glial cells

    Get PDF
    Glial cells are crucial for maintaining central nervous system (CNS) homeostasis. They actively participate in immune responses, as well as form functional barriers, such as blood-brain barrier (BBB), which restrict the entry of pathogens and inflammatory mediators into the CNS. In general, viral infections during the gestational period can alter the embryonic and fetal environment, and the related inflammatory response may affect neurodevelopment and lead to behavioral dysfunction during later stage of life, as highlighted by our group for Zika virus infection. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) induces a cytokine storm and, during pregnancy, may be related to a more severe form of the coronavirus disease-19 (COVID-19) and also to higher preterm birth rates. SARS-CoV-2 can also affect the CNS by inducing neurochemical remodeling in neural cells, which can compromise neuronal plasticity and synaptic function. However, the impact of SARS-CoV-2 infection during pregnancy on postnatal CNS, including brain development during childhood and adulthood, remains undetermined. Our group has recently highlighted the impact of COVID-19 on the expression of molecular markers associated with neuropsychiatric disorders, which are strongly related to the inflammatory response. Thus, based on these relationships, we discussed the impact of SARS-CoV-2 infection either during pregnancy or in critical periods of neurodevelopment as a risk factor for neurological consequences in the offspring later in life, focusing on the potential role of glial cells. Thus, it is important to consider future and long-term public health concerns associated with SARS-CoV-2 infection during pregnancy

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore