409 research outputs found

    Employing and Accommodating Individuals With Histories Of Alcohol Or Drug Abuse

    Get PDF
    This brochure on individuals with histories of alcohol or drug abuse and the Americans with Disabilities Act (ADA) is one of a series on human resources practices and workplace accommodations for persons with disabilities edited by Susanne M. Bruyùre, Ph.D., CRC, SPHR, Director, Program on Employment and Disability, School of Industrial and Labor Relations – Extension Division, Cornell University. Cornell University was funded in the early 1990’s by the U.S. Department of Education National Institute on Disability and Rehabilitation Research as a National Materials Development Project on the employment provisions (Title I) of the ADA (Grant #H133D10155). These updates, and the development of new brochures, have been funded by Cornell’s Program on Employment and Disability, and the Pacific Disability and Business Technical Assistance Center

    Child Welfare Interventions for Drug-Dependent Pregnant Women: Limitations of a Non-Public Health Response

    Get PDF
    National drug policy, medical practice and the child welfare system have not kept pace with scientific research that points to effective health interventions to address alcoholism and drug dependence among pregnant women. In its 2003 amendments to the Child Abuse Prevention and Treatment Act, Congress adopted a policy requiring physicians to report to child protective services all patients who give birth to an infant affected by illicit drug use. Drawing on epidemiological, medical and social science research, this Article critiques Congress’s decision to require health professionals to engage in a surveillance role instead of a therapeutic intervention. In seeking to craft an effective child protection strategy, this Article explores two fundamental issues that weigh against the adoption of a nationwide physician reporting requirement. The first is the child welfare system’s limited capacity – as an institution that carries out both child protection and rehabilitation functions simultaneously – to help drug-dependent pregnant women change their behavior. The second is the adverse effect of coerced treatment on both a physician’s ability to deliver effective prenatal care and a drug-dependent woman’s willingness to access health care that will mitigate the harm associated with drug use. This Article proposes that states adopt an alternative child protection model that restores physicians to their role of healer and requires them to carry out their ethical and therapeutic obligation to diagnose this serious medical problem during prenatal care

    Tracking Local Mechanical Impact in Heterogeneous Polymers with Direct Optical Imaging

    Get PDF
    Structural heterogeneity defines the properties of many functional polymers and it is often crucial for their performance and ability to withstand mechanical impact. Such heterogeneity, however, poses a tremendous challenge for characterization of these materials and limits our ability to design them rationally. Herein we present a practical methodology capable of resolving the complex mechanical behavior and tracking mechanical impact in discrete phases of segmented polyurethane—a typical example of a structurally complex polymer. Using direct optical imaging of photoluminescence produced by a small‐molecule organometallic mechano‐responsive sensor we observe in real time how polymer phases dissipate energy, restructure, and breakdown upon mechanical impact. Owing to its simplicity and robustness, this method has potential in describing the evolution of complex soft‐matter systems for which global characterization techniques fall short of providing molecular‐level insight

    Tracking Local Mechanical Impact in Heterogeneous Polymers with Direct Optical Imaging

    Get PDF
    Structural heterogeneity defines the properties of many functional polymers and it is often crucial for their performance and ability to withstand mechanical impact. Such heterogeneity, however, poses a tremendous challenge for characterization of these materials and limits our ability to design them rationally. Herein we present a practical methodology capable of resolving the complex mechanical behavior and tracking mechanical impact in discrete phases of segmented polyurethane—a typical example of a structurally complex polymer. Using direct optical imaging of photoluminescence produced by a small‐molecule organometallic mechano‐responsive sensor we observe in real time how polymer phases dissipate energy, restructure, and breakdown upon mechanical impact. Owing to its simplicity and robustness, this method has potential in describing the evolution of complex soft‐matter systems for which global characterization techniques fall short of providing molecular‐level insight

    Comparison of three commercial decision support platforms for matching of next-generation sequencing results with therapies in patients with cancer

    Get PDF
    Objective Precision oncology depends on translating molecular data into therapy recommendations. However, with the growing complexity of next-generation sequencing-based tests, clinical interpretation of somatic genomic mutations has evolved into a formidable task. Here, we compared the performance of three commercial clinical decision support tools, that is, NAVIFY Mutation Profiler (NAVIFY; Roche), QIAGEN Clinical Insight (QCI) Interpret (QIAGEN) and CureMatch Bionov (CureMatch). Methods In order to obtain the current status of the respective tumour genome, we analysed cell-free DNA from patients with metastatic breast, colorectal or non-small cell lung cancer. We evaluated somatic copy number alterations and in parallel applied a 77-gene panel (AVENIO ctDNA Expanded Panel). We then assessed the concordance of tier classification approaches between NAVIFY and QCI and compared the strategies to determine actionability among all three platforms. Finally, we quantified the alignment of treatment suggestions across all decision tools. Results Each platform varied in its mode of variant classification and strategy for identifying druggable targets and clinical trials, which resulted in major discrepancies. Even the frequency of concordant actionable events for tier I-A or tier I-B classifications was only 4.3%, 9.5% and 28.4% when comparing NAVIFY with QCI, NAVIFY with CureMatch and CureMatch with QCI, respectively, and the obtained treatment recommendations differed drastically. Conclusions Treatment decisions based on molecular markers appear at present to be arbitrary and dependent on the chosen strategy. As a consequence, tumours with identical molecular profiles would be differently treated, which challenges the promising concepts of genome-informed medicine

    Tissue registration and exploration user interfaces in support of a human reference atlas

    Get PDF
    Seventeen international consortia are collaborating on a human reference atlas (HRA), a comprehensive, high-resolution, three-dimensional atlas of all the cells in the healthy human body. Laboratories around the world are collecting tissue specimens from donors varying in sex, age, ethnicity, and body mass index. However, harmonizing tissue data across 25 organs and more than 15 bulk and spatial single-cell assay types poses challenges. Here, we present software tools and user interfaces developed to spatially and semantically annotate ( register ) and explore the tissue data and the evolving HRA. A key part of these tools is a common coordinate framework, providing standard terminologies and data structures for describing specimen, biological structure, and spatial data linked to existing ontologies. As of April 22, 2022, the registration user interface has been used to harmonize and publish data on 5,909 tissue blocks collected by the Human Biomolecular Atlas Program (HuBMAP), the Stimulating Peripheral Activity to Relieve Conditions program (SPARC), the Human Cell Atlas (HCA), the Kidney Precision Medicine Project (KPMP), and the Genotype Tissue Expression project (GTEx). Further, 5,856 tissue sections were derived from 506 HuBMAP tissue blocks. The second exploration user interface enables consortia to evaluate data quality, explore tissue data spatially within the context of the HRA, and guide data acquisition. A companion website is at https://cns-iu.github.io/HRA-supporting-information/

    Single tube liquid biopsy for advanced non-small cell lung cancer

    Get PDF
    The need for a liquid biopsy in non-small cell lung cancer (NSCLC) patients is rapidly increasing. We studied the relation between overall survival (OS) and the presence of four cancer biomarkers from a single blood draw in advanced NSCLC patients: EpCAM(high) circulating tumor cells (CTC), EpCAM(low) CTC, tumor-derived extracellular vesicles (tdEV) and cell-free circulating tumor DNA (ctDNA). EpCAM(high) CTC were detected with CellSearch, tdEV in the CellSearch images and EpCAM(low) CTC with filtration after CellSearch. ctDNA was isolated from plasma and mutations present in the primary tumor were tracked with deep sequencing methods. In 97 patients, 21% had >= 2 EpCAM(high) CTC, 15% had >= 2 EpCAM(low) CTC, 27% had >= 18 tdEV and 19% had ctDNA with >= 10% mutant allele frequency. Either one of these four biomarkers could be detected in 45% of the patients and all biomarkers were present in 2%. In 11 out of 16 patients (69%) mutations were detected in the ctDNA. Two or more unfavorable biomarkers were associated with poor OS. The presence of EpCAM(high) CTC and elevated levels of tdEV and ctDNA was associated with a poor OS; however, the presence of EpCAM(low) CTC was not. This single tube approach enables simultaneous analysis of multiple biomarkers to explore their potential as a liquid biopsy
    • 

    corecore