7,019 research outputs found

    On a Pioneering Polymer Electrolyte Fuel Cell Model

    Get PDF
    "Polymer Electrolyte Fuel Cell Model" is a seminal work that continues to form the basis for modern modeling efforts, especially models concerning the membrane and its behavior at the continuum level. The paper is complete with experimental data, modeling equations, model validation, and optimization scenarios. While the treatment of the underlying phenomena is limited to isothermal, single-phase conditions, and one-dimensional flow, it represents the key interactions within the membrane at the center of the PEFC. It focuses on analyzing the water balance within the cell and clearly demonstrates the complex interactions of water diffusion and electro-osmotic flux. Cell-level and system-level water balance are key to the development of efficient PEFCs going forward, particularly as researchers address the need to simplify humidification and recycle configurations while increasing the operating temperature of the stack to minimize radiator requirements

    Highly Permeable Perfluorinated Sulfonic Acid Ionomers for Improved Electrochemical Devices: Insights into Structure-Property Relationships.

    Get PDF
    Rapid improvements in polymer-electrolyte fuel-cell (PEFC) performance have been driven by the development of commercially available ion-conducting polymers (ionomers) that are employed as membranes and catalyst binders in membrane-electrode assemblies. Commercially available ionomers are based on a perfluorinated chemistry comprised of a polytetrafluoroethylene (PTFE) matrix that imparts low gas permeability and high mechanical strength but introduces significant mass-transport losses in the electrodes. These transport losses currently limit PEFC performance, especially for low Pt loadings. In this study, we present a novel ionomer incorporating a glassy amorphous matrix based on a perfluoro(2-methylene-4-methyl-1,3-dioxolane) (PFMMD) backbone. The novel backbone chemistry induces structural changes in the ionomer, restricting ionomer domain swelling under hydration while disrupting matrix crystallinity. These structural changes slightly reduce proton conductivity while significantly improving gas permeability. The performance implications of this trade-off are assessed, which reveal the potential for substantial performance improvement by incorporation of highly permeable ionomers as the functional catalyst binder. These results underscore the significance of tailoring material chemistry to specific device requirements, where ionomer chemistry should be rationally designed to match the local transport requirements of the device architecture

    Modelling bispecific monoclonal antibody interaction with two cell membrane targets indicates the importance of surface diffusion

    Get PDF
    We have developed a mathematical framework for describing a bispecific monoclonal antibody interaction with two independent membrane-bound targets that are expressed on the same cell surface. The bispecific antibody in solution binds either of the two targets first, and then cross-links with the second one whilst on the cell surface, subject to rate-limiting lateral diffusion step within the lifetime of the monovalently engaged antibody-antigen complex. At experimental densities, only a small fraction of the free targets is expected to lie within the reach of the antibody binding sites at any time. Using ordinary differential equation and Monte Carlo simulation-based models, we validated this approach against an independently published anti-CD4/CD70 DuetMab experimental data set. As a result of dimensional reduction, the cell surface reaction is expected to be so rapid that, in agreement with the experimental data, no monovalently bound bispecific antibody binary complexes accumulate until cross-linking is complete. The dissociation of the bispecific antibody from the ternary cross-linked complex is expected to be significantly slower than that from either of the monovalently bound variants. We estimate that the effective affinity of the bivalently bound bispecific antibody is enhanced for about four orders of magnitude over that of the monovalently bound species. This avidity enhancement allows for the highly specific binding of anti-CD4/CD70 DuetMab to the cells that are positive for both target antigens over those that express only one or the other We suggest that the lateral diffusion of target antigens in the cell membrane also plays a key role in the avidity effect of natural antibodies and other bivalent ligands in their interactions with their respective cell surface receptors

    Gas-Diffusion Electrodes for Carbon-Dioxide Reduction: A New Paradigm

    Get PDF
    Significant advances have been made in recent years discovering new electrocatalysts and developing a fundamental understanding of electrochemical CO_2 reduction processes. This field has progressed to the point that efforts can now focus on translating this knowledge toward the development of practical CO_2 electrolyzers, which have the potential to replace conventional petrochemical processes as a sustainable route to produce fuels and chemicals. In this Perspective, we take a critical look at the progress in incorporating electrochemical CO_2 reduction catalysts into practical device architectures that operate using vapor-phase CO_2 reactants, thereby overcoming intrinsic limitations of aqueous-based systems. Performance comparison is made between state-of-the-art CO_2 electrolyzers and commercial H_2O electrolyzers—a well-established technology that provides realistic performance targets. Beyond just higher rates, vapor-fed reactors represent new paradigms for unprecedented control of local reaction conditions, and we provide a perspective on the challenges and opportunities for generating fundamental knowledge and achieving technological progress toward the development of practical CO_2 electrolyzers

    Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems

    Get PDF
    The instantaneous efficiency of an operating photoelectrochemical solar-fuel-generator system is a complicated function of the tradeoffs between the light intensity and temperature-dependence of the photovoltage and photocurrent, as well as the losses associated with factors that include ohmic resistances, concentration overpotentials, kinetic overpotentials, and mass transport. These tradeoffs were evaluated quantitatively using an advanced photoelectrochemical device model comprised of an analytical device physics model for the semiconducting light absorbers in combination with a multi-physics device model that solved for the governing conservation equations in the various other parts of the system. The model was used to evaluate the variation in system efficiency due to hourly and seasonal variations in solar irradiation as well as due to variation in the isothermal system temperature. The system performance characteristics were also evaluated as a function of the band gaps of the dual-absorber tandem component and its properties, as well as the device dimensions and the electrolyte conductivity. The modeling indicated that the system efficiency varied significantly during the day and over a year, exhibiting local minima at midday and a global minimum at midyear when the solar irradiation is most intense. These variations can be reduced by a favorable choice of the system dimensions, by a reduction in the electrolyte ohmic resistances, and/or by utilization of very active electrocatalysts for the fuel-producing reactions. An increase in the system temperature decreased the annual average efficiency and led to less rapid ramp-up and ramp-down phases of the system, but reduced midday and midyear instantaneous efficiency variations. Careful choice of the system dimensions resulted in minimal change in the system efficiency in response to degradation in the quality of the light absorbing materials. The daily and annually averaged mass of hydrogen production for the optimized integrated system compared favorably to the daily and annually averaged mass of hydrogen that was produced by an optimized stand-alone tandem photovoltaic array connected electrically to a stand-alone electrolyzer system. The model can be used to predict the performance of the system, to optimize the design of solar-driven water splitting devices, and to guide the development of components of the devices as well as of the system as a whole

    Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes

    Get PDF
    Bipolar membranes (BPMs) have the potential to become critical components in electrochemical devices for a variety of electrolysis and electrosynthesis applications. Because they can operate under large pH gradients, BPMs enable favorable environments for electrocatalysis at the individual electrodes. Critical to the implementation of BPMs in these devices is understanding the kinetics of water dissociation that occurs within the BPM as well as the co- and counter-ion crossover through the BPM, which both present significant obstacles to developing efficient and stable BPM-electrolyzers. In this study, a continuum model of multi-ion transport in a BPM is developed and fit to experimental data. Specifically, concentration profiles are determined for all ionic species, and the importance of a water-dissociation catalyst is demonstrated. The model describes internal concentration polarization and co- and counter-ion crossover in BPMs, determining the mode of transport for ions within the BPM and revealing the significance of salt-ion crossover when operated with pH gradients relevant to electrolysis and electrosynthesis. Finally, a sensitivity analysis reveals that the performance and lifetime of BPMs can be improved substantially by using of thinner dissociation catalysts, managing water transport, modulating the thickness of the individual layers in the BPM to control salt-ion crossover, and increasing the ion-exchange capacity of the ion-exchange layers in order to amplify the water-dissociation kinetics at the interface

    Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems

    Get PDF
    A validated multi-physics numerical model that accounts for charge and species conservation, fluid flow, and electrochemical processes has been used to analyze the performance of solar-driven photoelectrochemical water-splitting systems. The modeling has provided an in-depth analysis of conceptual designs, proof-of-concepts, feasibility investigations, and quantification of performance. The modeling has led to the formulation of design guidelines at the system and component levels, and has identified quantifiable gaps that warrant further research effort at the component level. The two characteristic generic types of photoelectrochemical systems that were analyzed utilized: (i) side-by-side photoelectrodes and (ii) back-to-back photoelectrodes. In these designs, small electrode dimensions (mm to cm range) and large electrolyte heights were required to produce small overall resistive losses in the system. Additionally, thick, non-permeable separators were required to achieve acceptably low rates of product crossover
    • …
    corecore