3,458 research outputs found

    Power Corrections to Fragmentation Functions in Non-Singlet Deep Inelastic Scattering

    Full text link
    We investigate the power-suppressed corrections to the fragmentation functions of the current jet in non-singlet deep inelastic lepton-hadron scattering. The current jet is defined by selecting final-state particles in the current hemisphere in the Breit frame of reference. Our method is based on an analysis of one-loop Feynman graphs containing a massive gluon, which is equivalent to the evaluation of leading infrared renormalon contributions. We find that the leading corrections are proportional to 1/Q21/Q^2, as in e+ee^+e^- annihilation, but their functional forms are different. We give quantitative estimates based on the hypothesis of universal low-energy behaviour of the strong coupling.Comment: 14 pages, 4 figures, LaTeX2e, uses JHEP.cls (included) and epsfi

    Non-perturbative effects in the energy-energy correlation

    Get PDF
    The fully resummed next-to-leading-order perturbative calculation of the energy-energy correlation in e+ee^+e^- annihilation is extended to include the leading non-perturbative power-behaved contributions computed using the ``dispersive method'' applied earlier to event shape variables. The correlation between a leading (anti)quark and a gluon produces a non-perturbative 1/Q contribution, while non-perturbative effects in the quark-antiquark correlation give rise to a smaller contribution lnQ2/Q2\ln Q^2/Q^2. In the back-to-back region, the power-suppressed contributions actually decrease much more slowly, as small non-integer powers of 1/Q, as a result of the interplay with perturbative effects. The hypothesis of a universal low-energy form for the strong coupling relates the coefficients of these contributions to those measured for other observables.Comment: 41 pages, LaTeX, 4 figures, uses JHEP.cl

    Reconstructing particle masses from pairs of decay chains

    Full text link
    A method is proposed for determining the masses of the new particles N,X,Y,Z in collider events containing a pair of effectively identical decay chains Z to Y+jet, Y to X+l_1, X to N+l_2, where l_1, l_2 are opposite-sign same-flavour charged leptons and N is invisible. By first determining the upper edge of the dilepton invariant mass spectrum, we reduce the problem to a curve for each event in the 3-dimensional space of mass-squared differences. The region through which most curves pass then determines the unknown masses. A statistical approach is applied to take account of mismeasurement of jet and missing momenta. The method is easily visualized and rather robust against combinatorial ambiguities and finite detector resolution. It can be successful even for small event samples, since it makes full use of the kinematical information from every event.Comment: 12 pages, 5 figure

    Topological properties and fractal analysis of recurrence network constructed from fractional Brownian motions

    Full text link
    Many studies have shown that we can gain additional information on time series by investigating their accompanying complex networks. In this work, we investigate the fundamental topological and fractal properties of recurrence networks constructed from fractional Brownian motions (FBMs). First, our results indicate that the constructed recurrence networks have exponential degree distributions; the relationship between HH and canberepresentedbyacubicpolynomialfunction.Wenextfocusonthemotifrankdistributionofrecurrencenetworks,sothatwecanbetterunderstandnetworksatthelocalstructurelevel.Wefindtheinterestingsuperfamilyphenomenon,i.e.therecurrencenetworkswiththesamemotifrankpatternbeinggroupedintotwosuperfamilies.Last,wenumericallyanalyzethefractalandmultifractalpropertiesofrecurrencenetworks.Wefindthattheaveragefractaldimension can be represented by a cubic polynomial function. We next focus on the motif rank distribution of recurrence networks, so that we can better understand networks at the local structure level. We find the interesting superfamily phenomenon, i.e. the recurrence networks with the same motif rank pattern being grouped into two superfamilies. Last, we numerically analyze the fractal and multifractal properties of recurrence networks. We find that the average fractal dimension of recurrence networks decreases with the Hurst index HH of the associated FBMs, and their dependence approximately satisfies the linear formula 2H \approx 2 - H. Moreover, our numerical results of multifractal analysis show that the multifractality exists in these recurrence networks, and the multifractality of these networks becomes stronger at first and then weaker when the Hurst index of the associated time series becomes larger from 0.4 to 0.95. In particular, the recurrence network with the Hurst index H=0.5H=0.5 possess the strongest multifractality. In addition, the dependence relationships of the average information dimension andtheaveragecorrelationdimension and the average correlation dimension on the Hurst index HH can also be fitted well with linear functions. Our results strongly suggest that the recurrence network inherits the basic characteristic and the fractal nature of the associated FBM series.Comment: 25 pages, 1 table, 15 figures. accepted by Phys. Rev.

    Color separate singlets in e+ee^+e^- annihilation

    Get PDF
    We use the method of color effective Hamiltonian to study the properties of states in which a gluonic subsystem forms a color singlet, and we will study the possibility that such a subsystem hadronizes as a separate unit. A parton system can normally be subdivided into singlet subsystems in many different ways, and one problem arises from the fact that the corresponding states are not orthogonal. We show that if only contributions of order 1/Nc21/N_c^2 are included, the problem is greatly simplified. Only a very limited number of states are possible, and we present an orthogonalization procedure for these states. The result is simple and intuitive and could give an estimate of the possibility to produce color separated gluonic subsystems, if no dynamical effects are important. We also study with a simple MC the possibility that configurations which correspond to "short strings" are dynamically favored. The advantage of our approach over more elaborate models is its simplicity, which makes it easier to estimate color reconnection effects in reactions which are more complicated than the relatively simple e+ee^+e^- annihilation.Comment: Revtex, 24 pages, 7 figures; Compared to the previous version, 1 new figure is added and Monte-Carlo results are re-analyzed, as suggested by the referee; To appear in Phys. Rev.

    Polynomials, Riemann surfaces, and reconstructing missing-energy events

    Get PDF
    We consider the problem of reconstructing energies, momenta, and masses in collider events with missing energy, along with the complications introduced by combinatorial ambiguities and measurement errors. Typically, one reconstructs more than one value and we show how the wrong values may be correlated with the right ones. The problem has a natural formulation in terms of the theory of Riemann surfaces. We discuss examples including top quark decays in the Standard Model (relevant for top quark mass measurements and tests of spin correlation), cascade decays in models of new physics containing dark matter candidates, decays of third-generation leptoquarks in composite models of electroweak symmetry breaking, and Higgs boson decay into two tau leptons.Comment: 28 pages, 6 figures; version accepted for publication, with discussion of Higgs to tau tau deca

    The unintegrated gluon distribution from the CCFM equation

    Get PDF
    The gluon distribution f(x, k_t^2,mu^2), unintegrated over the transverse momentum k_t of the gluon, satisfies the angular-ordered CCFM equation which interlocks the dependence on the scale k_t with the scale \mu of the probe. We show how, to leading logarithmic accuracy, the equation can be simplified to a single scale problem. In particular we demonstrate how to determine the two-scale unintegrated distribution f(x,k_t^2,mu^2) from knowledge of the integrated gluon obtained from a unified scheme embodying both BFKL and DGLAP evolution.Comment: 16 pages LaTeX, 3 eps figure

    Better Jet Clustering Algorithms

    Get PDF
    We investigate modifications to the kk_\perp-clustering jet algorithm which preserve the advantages of the original Durham algorithm while reducing non-perturbative corrections and providing better resolution of jet substructure. We find that a simple change in the sequence of clustering (combining smaller-angle pairs first), together with the `freezing' of soft resolved jets, has beneficial effects.Comment: 32 pages, 16 figures, LaTeX2e, uses JHEP.cls (included). Version to be published in JHEP: reference to LUCLUS algorithm added. Program available at http://www.hep.phy.cam.ac.uk/theory/webber/camjet

    Space, Time and Color in Hadron Production Via e+e- -> Z0 and e+e- -> W+W-

    Get PDF
    The time-evolution of jets in hadronic e+e- events at LEP is investigated in both position- and momentum-space, with emphasis on effects due to color flow and particle correlations. We address dynamical aspects of the four simultanously-evolving, cross-talking parton cascades that appear in the reaction e+e- -> gamma/Z0 -> W+W- -> q1 q~2 q3 q~4, and compare with the familiar two-parton cascades in e+e- -> Z0 -> q1 q~2. We use a QCD statistical transport approach, in which the multiparticle final state is treated as an evolving mixture of partons and hadrons, whose proportions are controlled by their local space-time geography via standard perturbative QCD parton shower evolution and a phenomenological model for non-perturbative parton-cluster formation followed by cluster decays into hadrons. Our numerical simulations exhibit a characteristic `inside-outside' evolution simultanously in position and momentum space. We compare three different model treatments of color flow, and find large effects due to cluster formation by the combination of partons from different W parents. In particular, we find in our preferred model a shift of several hundred MeV in the apparent mass of the W, which is considerably larger than in previous model calculations. This suggests that the determination of the W mass at LEP2 may turn out to be a sensitive probe of spatial correlations and hadronization dynamics.Comment: 52 pages, latex, 18 figures as uu-encoded postscript fil
    corecore