240 research outputs found

    HERBVI - a program for simulation of baryon- and lepton- number violating processes

    Get PDF
    We describe a Monte Carlo event generator for the simulation of baryon- and lepton-number violating processes at supercolliders. The package, {\HERBVI}, is designed as a hard-process generator interfacing to the general hadronic event simulation program {\HW}. In view of the very high multiplicity of gauge bosons expected in such processes, particular attention is paid to the efficient generation of multiparticle phase space. The program also takes account of the expected colour structure of baryon-number violating vertices, which has important implications for the hadronization of the final state.Comment: 19 pages, standard LaTeX, no figure

    Multiplierz: An Extensible API Based Desktop Environment for Proteomics Data Analysis

    Get PDF
    BACKGROUND. Efficient analysis of results from mass spectrometry-based proteomics experiments requires access to disparate data types, including native mass spectrometry files, output from algorithms that assign peptide sequence to MS/MS spectra, and annotation for proteins and pathways from various database sources. Moreover, proteomics technologies and experimental methods are not yet standardized; hence a high degree of flexibility is necessary for efficient support of high- and low-throughput data analytic tasks. Development of a desktop environment that is sufficiently robust for deployment in data analytic pipelines, and simultaneously supports customization for programmers and non-programmers alike, has proven to be a significant challenge. RESULTS. We describe multiplierz, a flexible and open-source desktop environment for comprehensive proteomics data analysis. We use this framework to expose a prototype version of our recently proposed common API (mzAPI) designed for direct access to proprietary mass spectrometry files. In addition to routine data analytic tasks, multiplierz supports generation of information rich, portable spreadsheet-based reports. Moreover, multiplierz is designed around a "zero infrastructure" philosophy, meaning that it can be deployed by end users with little or no system administration support. Finally, access to multiplierz functionality is provided via high-level Python scripts, resulting in a fully extensible data analytic environment for rapid development of custom algorithms and deployment of high-throughput data pipelines. CONCLUSION. Collectively, mzAPI and multiplierz facilitate a wide range of data analysis tasks, spanning technology development to biological annotation, for mass spectrometry-based proteomics research.Dana-Farber Cancer Institute; National Human Genome Research Institute (P50HG004233); National Science Foundation Integrative Graduate Education and Research Traineeship grant (DGE-0654108

    The Brighton declaration: the value of non-communicable disease modelling in population health sciences.

    Get PDF
    The Brighton declaration arose out of a one day workshop held in Brighton in September 2013 as part of the Society for Social Medicine annual conference. The workshop convened UK based non-communicable disease modellers to discuss the challenges and opportunities for non-communicable disease modelling in the UK. The declaration describes the value and importance of non-communicable disease modelling, both for research and for informing health policy. The declaration also describes challenges and issues for non-communicable disease modelling. The declaration has been endorsed by many non-communicable disease modellers in the UK.The following academics collaborated with the authors to finalise this article are and acknowledged as co-signatories on its content. The authors are extremely grateful for their input. University of Cambridge: Ali Abbas, Marko Tanio; University of Edinburgh: Dr Susannah McLean; UK Health Forum: Martin Brown, Tim Marsh, Marco Mesa-Frias, Lise Retat; Imperial College London: Anthony Laverty; The London School of Hygiene and Tropical Medicine: Zaid Chalabi; University College London: Luz Sanchez Romero; University of Oxford: Anja Mizdrak, Mike Rayner, Marco Springmann; University of Sheffield: Alan Brennan, James Chilcott, John Holmes, Petra Meier, John Mooney; University of Southampton: Grant Aitken. ADMB and OTM are funded by the Wellcome Trust. PS is funded by the British Heart Foundation. JW is funded by an MRC Population Health Scientist Fellowship.This is the final published version. The article was originally published in the European Journal of Epidemiology (2014) 29, 867–870, DOI 10.1007/s10654-014-9978-0

    Precision measurements of the top quark mass from the Tevatron in the pre-LHC era

    Full text link
    The top quark is the heaviest of the six quarks of the Standard Model. Precise knowledge of its mass is important for imposing constraints on a number of physics processes, including interactions of the as yet unobserved Higgs boson. The Higgs boson is the only missing particle of the Standard Model, central to the electroweak symmetry breaking mechanism and generation of particle masses. In this Review, experimental measurements of the top quark mass accomplished at the Tevatron, a proton-antiproton collider located at the Fermi National Accelerator Laboratory, are described. Topologies of top quark events and methods used to separate signal events from background sources are discussed. Data analysis techniques used to extract information about the top mass value are reviewed. The combination of several most precise measurements performed with the two Tevatron particle detectors, CDF and \D0, yields a value of \Mt = 173.2 \pm 0.9 GeV/c2c^2.Comment: This version contains the most up-to-date top quark mass averag

    Synthetic Lethal Targeting of ARID1A-Mutant Ovarian Clear Cell Tumors with Dasatinib

    Get PDF
    New targeted approaches to ovarian clear cell carcinomas (OCCC) are needed, given the limited treatment options in this disease and the poor response to standard chemotherapy. Using a series of high-throughput cell-based drug screens in OCCC tumor cell models, we have identified a synthetic lethal (SL) interaction between the kinase inhibitor dasatinib and a key driver in OCCC, ARID1A mutation. Imposing ARID1A deficiency upon a variety of human or mouse cells induced dasatinib sensitivity, both in vitro and in vivo, suggesting that this is a robust synthetic lethal interaction. The sensitivity of ARID1A-deficient cells to dasatinib was associated with G1 -S cell-cycle arrest and was dependent upon both p21 and Rb. Using focused siRNA screens and kinase profiling, we showed that ARID1A-mutant OCCC tumor cells are addicted to the dasatinib target YES1. This suggests that dasatinib merits investigation for the treatment of patients with ARID1Amutant OCCC. Mol Cancer Ther; 15(7); 1472-84. Ó2016 AACR.</p

    A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO

    Get PDF
    The first simultaneous operation of the AURIGA detector and the LIGO observatory was an opportunity to explore real data, joint analysis methods between two very different types of gravitational wave detectors: resonant bars and interferometers. This paper describes a coincident gravitational wave burst search, where data from the LIGO interferometers are cross-correlated at the time of AURIGA candidate events to identify coherent transients. The analysis pipeline is tuned with two thresholds, on the signal-to-noise ratio of AURIGA candidate events and on the significance of the cross-correlation test in LIGO. The false alarm rate is estimated by introducing time shifts between data sets and the network detection efficiency is measured with simulated signals with power in the narrower AURIGA band. In the absence of a detection, we discuss how to set an upper limit on the rate of gravitational waves and to interpret it according to different source models. Due to the short amount of analyzed data and to the high rate of non-Gaussian transients in the detectors noise at the time, the relevance of this study is methodological: this was the first joint search for gravitational wave bursts among detectors with such different spectral sensitivity and the first opportunity for the resonant and interferometric communities to unify languages and techniques in the pursuit of their common goal.Comment: 18 pages, IOP, 12 EPS figure

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure
    corecore