20,529 research outputs found

    Self-Avoiding Modes of Motion in a Deterministic Lorentz Lattice Gas

    Full text link
    We study the motion of a particle on the two-dimensional honeycomb lattice, whose sites are occupied by either flipping rotators or flipping mirrors, which scatter the particle according to a deterministic rule. For both types of scatterers we find a new type of motion that has not been observed in a Lorentz Lattice gas, where the particle's trajectory is a self-avoiding walk between returns to its initial position. We show that this behavior is a consequence of the deterministic scattering rule and the particular class of initial scatterer configurations we consider. Since self-avoiding walks are one of the main tools used to model the growth of crystals and polymers, the particle's motion in this class of systems is potentially important for the study of these processes.Comment: 32 pages, 18 figure

    Standard comparison test procedures for initiator output

    Get PDF
    Standard test procedures for initiators of explosive device

    Multiplexed communication over a high-speed quantum channel

    Get PDF
    In quantum information systems it is of particular interest to consider the best way in which to use the non-classical resources consumed by that system. Quantum communication protocols are integral to quantum information systems and are amongst the most promising near-term applications of quantum information science. Here we show that a multiplexed, digital quantum communications system supported by comb of vacuum squeezing has a greater channel capacity per photon than a source of broadband squeezing with the same analogue bandwidth. We report on the time-resolved, simultaneous observation of the first dozen teeth in a 2.4 GHz comb of vacuum squeezing produced by a sub-threshold OPO, as required for such a quantum communications channel. We also demonstrate multiplexed communication on that channel

    The improvement of wind tunnel diffuser characteristics

    Get PDF
    Thesis (M.S.) Massachusetts Institute of Technology. Dept. of Aeronautical Engineering, 1949.Bibliography: leaf 16.by Henry G. Webb, Jr. and Joseph E. Zupanick.M.S
    corecore