2,298 research outputs found
Fire-mediated niche-separation between two sympatric small mammal species
© 2014 Ecological Society of Australia. Fire is a key ecological process influencing the population dynamics of small mammals. Whilst shifting competitive advantage amongst small mammal species following a single fire event is well-documented, there has been little investigation of the potential influence of fire frequency on small mammal interspecific interactions. In this study, we investigated the effect of fire frequency on the abundance of two small dasyurid mammals, Antechinus stuartii and A. flavipes, which occur sympatrically in some parts of their range. The two antechinus species are known to have different habitat preferences, so it is possible that fire regimes may promote their coexistence in areas of sympatry by altering vegetation structure. To investigate this possibility, we estimated the abundance of both species using replicate sites which differed in the number of times burnt (1-4) during the last four decades, but with identical time-since-fire. Proportionally, we captured greater numbers of A. stuartii in less frequently burnt sites and greater numbers of A. flavipes in more-frequently burnt sites. Hence, fire may mediate niche-separation between these two species. To clarify further this pattern of response to fire frequency, we investigated which structural habitat variables differed between fire frequencies, and compared antechinus abundances with structural vegetation characteristics. We found a trend for lower ground cover density under higher fire frequencies. This offers one potential explanation of the patterns of abundance that we observed. Our study provided insights into the complexities of small mammal responses to fire, and strongly suggests that fire could mediate competitive interactions between species
Variation of prey responses to cues from a mesopredator and an apex predator
© 2014 Ecological Society of Australia 39 7 November 2014 10.1111/aec.12138 Original Articles Original Article © 2014 The Authors. Austral Ecology. Detection and avoidance of predator cues can be costly, so it is important for prey to balance the benefits of gaining food against the costs of avoiding predators. Balancing these factors becomes more complicated when prey are threatened by more than one type of predator. Hence, the ability to recognize species-specific predator odours and prioritize behaviours according to the level of risk is essential for survival. We investigated how rock rats, Zyzomys spp. modify their foraging behaviour and giving-up density (GUD) in the presence of an apex predator, the dingo Canis dingo, a mesopredator, the northern quoll Dasyurus hallucatus, a herbivore, the rock wallaby Petrogale brachyotis as a pungency control and water as a procedural control. Both dingoes and quolls consume rock rats, but because quolls can enter small crevices inhabited by rock rats, they pose a greater threat to rock rats than dingoes. Rock rats demonstrated a stronger avoidance to quoll odour than dingo odour, and no avoidance of the pungency control (rock wallaby) and the procedural control (water). GUD values declined significantly over the duration of the study, but did not differ between odour treatments. Our results support the hypothesis that prey vary behaviour according to perceived predator threat, and show stronger responses to potentially more dangerous predators
Hotter nests produce hatchling lizards with lower thermal tolerance
© 2017. Published by The Company of Biologists Ltd. In many regions, the frequency and duration of summer heatwaves is predicted to increase in future. Hotter summers could result in higher temperatures inside lizard nests, potentially exposing embryos to thermally stressful conditions during development. Potentially, developmentally plastic shifts in thermal tolerance could allow lizards to adapt to climate warming. To determine how higher nest temperatures affect the thermal tolerance of hatchling geckos, we incubated eggs of the rock-dwelling velvet gecko, Amalosia lesueurii, at two fluctuating temperature regimes to mimic current nest temperatures (mean 23.2°C, range 10-33°C, 'cold') and future nest temperatures (mean 27.0°C, range 14-37°C, 'hot'). Hatchlings from the hot incubation group hatched 27 days earlier and had a lower critical thermal maximum (CTmax 38.7°C) and a higher critical thermal minimum (CTmin 6.2°C) than hatchlings from cold incubation group (40.2 and 5.7°C, respectively). In the field, hatchlings typically settle under rocks near communal nests. During the hatching period, rock temperatures ranged from 13 to 59°C, and regularly exceeded the CTmax of both hot- and cold-incubated hatchlings. Because rock temperatures were so high, the heat tolerance of lizards had little effect on their ability to exploit rocks as retreat sites. Instead, the timing of hatching dictated whether lizards could exploit rocks as retreat sites; that is, cold-incubated lizards that hatched later encountered less thermally stressful environments than earlier hatching hot-incubated lizards. In conclusion, we found no evidence that CTmax can shift upwards in response to higher incubation temperatures, suggesting that hotter summers may increase the vulnerability of lizards to climate warming
Slow life history leaves endangered snake vulnerable to illegal collecting.
Global wildlife trade is a multibillion-dollar industry and a significant driver of vertebrate extinction risk. Yet, few studies have quantified the impact of wild harvesting for the illicit pet trade on populations. Long-lived species, by virtue of their slow life history characteristics, may be unable to sustain even low levels of collecting. Here, we assessed the impact of illegal collecting on populations of endangered broad-headed snakes (Hoplocephalus bungaroides) at gated (protected) and ungated (unprotected) sites. Because broad-headed snakes are long-lived, grow slowly and reproduce infrequently, populations are likely vulnerable to increases in adult mortality. Long-term data revealed that annual survival rates of snakes were significantly lower in the ungated population than the gated population, consistent with the hypothesis of human removal of snakes for the pet trade. Population viability analysis showed that the ungated population has a strongly negative population growth rate and is only prevented from ultimate extinction by dispersal of small numbers of individuals from the gated population. Sensitivity analyses showed that the removal of a small number of adult females was sufficient to impose negative population growth and suggests that threatened species with slow life histories are likely to be especially vulnerable to illegal collecting
Behavioural flexibility allows an invasive vertebrate to survive in a semi-arid environment
Plasticity or evolution in behavioural responses are key attributes of successful animal invasions. In northern Australia, the invasive cane toad (Rhinella marina) recently invaded semi-arid regions. Here, cane toads endure repeated daily bouts of severe desiccation and thermal stress during the long dry season (April-October).We investigated whether cane toads have shifted their ancestral nocturnal rehydration behaviour to one that exploits water resources during the day. Such a shift in hydration behaviour could increase the fitness of individual toads by reducing exposure to desiccation and thermal stress suffered during the day even within terrestrial shelters.We used a novel method (acoustic tags) to monitor the daily hydration behaviour of 20 toads at two artificial reservoirs on Camfield station, Northern Territory. Remarkably, cane toads visited reservoirs to rehydrate during daylight hours, with peaks in activity between 9.00 and 17.00. This diurnal pattern of rehydration activity contrasts with nocturnal rehydration behaviour exhibited by adult toads in their native geographical range and more mesic parts of Australia. Our results demonstrate that cane toads phase shift a key behaviour to survive in a harsh semi-arid landscape. Behavioural phase shifts have rarely been reported in invasive species but could facilitate ongoing invasion success. © 2014 The Author(s) Published by the Royal Society
Carrion subsidies provided by fishermen increase predation of beach-nesting bird nests by facultative scavengers
© 2014 The Zoological Society of London. Many predators are also scavengers that feed on carrion and human refuse. Therefore, the availability of carrion can elevate the abundance or activity of facultative scavengers, amplifying predation pressure on prey. On Australian beaches, fishermen often discard fish carcasses that could attract facultative scavengers, both native, such as Australian ravens Corvus coronoides, and invasive, such as European red foxes Vulpes vulpes, and result in elevated rates of predation on wildlife. We tested whether the presence of fish carcasses increased the risk of depredation for nearby nests of beach-nesting birds by deploying artificial nests in 12 subsidized and 12 control patches, spaced 1 km apart, on a beach. We placed a fish carcass in each subsidized patch, but not at control patches. In each patch, we placed two artificial nests, which resembled red-capped plover Charadrius ruficapillus nests, 80 m apart and 40m from carcasses at subsidized patches. Nest predators were identified from tracks and predator activity near subsidized and control nests was measured by counting tracks crossing a straight transect (220m). The activity of a native predator, the Australian raven, was 17 times higher near (<80m) nests with fish carcasses than nests without carcasses. After 72h, 96% of nests near carcasses were depredated compared with 30% of nests without carcasses. Ravens were identified as the culprit for 80% of depredated nests. Although other predators were present in the study area, they did not depredate artificial nests in this experiment. Previous studies have highlighted the effects of permanent and/or large-scale food resources on scavenger abundance and impact. A key management implication of our study is that even small, sparsely distributed, temporally irregular food subsidies, provided by humans, can elevate the activity and predatory impacts of facultative scavengers
Movements and Habitat Use of an Endangered Snake, Hoplocephalus bungaroides (Elapidae): Implications for Conservation
A detailed understanding of how extensively animals move through the landscape, and the habitat features upon which they rely, can identify conservation priorities and thus inform management planning. For many endangered species, information on habitat use either is sparse, or is based upon studies from a small part of the species' range. The broad-headed snake (Hoplocephalus bungaroides) is restricted to a specialized habitat (sandstone outcrops and nearby forests) within a small geographic range in south-eastern Australia. Previous research on this endangered taxon was done at a single site in the extreme south of the species' geographic range. We captured and radio-tracked 9 adult broad-headed snakes at sites in the northern part of the species' distribution, to evaluate the generality of results from prior studies, and to identify critical habitat components for this northern population. Snakes spent most of winter beneath sun-warmed rocks then shifted to tree hollows in summer. Thermal regimes within retreat-sites support the hypothesis that this shift is thermally driven. Intervals between successive displacements were longer than in the southern snakes but dispersal distances per move and home ranges were similar. Our snakes showed non-random preferences both in terms of macrohabitat (e.g., avoidance of some vegetation types) and microhabitat (e.g., frequent use of hollow-bearing trees). Despite many consistencies, the ecology of this species differs enough between southern and northern extremes of its range that managers need to incorporate information on local features to most effectively conserve this threatened reptile. © 2013 Croak et al
Artificial water points facilitate the spread of an invasive vertebrate in arid Australia
Summary: The spread of invasive species after their initial introduction is often facilitated by human actions. In some cases, invaders only become established in habitats where dominant native species have been displaced as a result of human actions or where humans inadvertently provide essential resources such as food, water or shelter. We investigated if dams that provide water for livestock have facilitated the cane toad's (Rhinella marina) invasion of a hot semi-arid landscape by providing toads with a resource subsidy and hence refuge from extreme heat and aridity. To determine the relationship between the presence of surface water and habitat occupancy by toads, we surveyed natural and artificial water features for cane toads during the annual dry season. We used radiotracking and acoustic tags to determine whether movement patterns and shelter use of cane toads were focussed around dams. To determine whether dams provide toads with refuge from extreme heat and aridity, we deployed plaster models with internal thermometers to estimate ambient temperatures and toad desiccation rates in shelter sites. To determine whether dams alleviate the stress experienced by toads, we measured plasma corticosterone levels of toads that sheltered in and away from dams. Toads were present in sites with standing water and absent from waterless sites. Most radiotracked toads sheltered within 1 m of water. Toad movements were focussed around water. Toads tracked with passive acoustic telemetry over a 6-month dry season were highly resident at dams. Plaster models placed in toad shelter sites away from the water lost 27% more mass and experienced higher temperatures than models placed near the water's edge. Toads that sheltered in terrestrial shelters exhibited higher plasma corticosterone levels compared to toads that sheltered near dams. Dams provide toads with refuge habitats where they are less at risk from overheating and dehydration. Synthesis and applications. Artificial water points can facilitate biological invasions in arid regions by providing a resource subsidy for water-dependent invasive species. Our study suggests that there is scope to control populations of water-dependent invasive vertebrates in arid regions by restricting their access to artificial water points. © 2014 British Ecological Society
A trophic cascade initiated by an invasive vertebrate alters the structure of native reptile communities.
Invasive vertebrates are frequently reported to have catastrophic effects on the populations of species which they directly impact. It follows then, that if invaders exert strong suppressive effects on some species then other species will indirectly benefit due to ecological release from interactions with directly impacted species. However, evidence that invasive vertebrates trigger such trophic cascades and alter community structure in terrestrial ecosystems remains rare. Here, we ask how the cane toad, a vertebrate invader that is toxic to many of Australia's vertebrate predators, influences lizard assemblages in a semi-arid rangeland. In our study area, the density of cane toads is influenced by the availability of water accessible to toads. We compared an index of the abundance of sand goannas, a large predatory lizard that is susceptible to poisoning by cane toads and the abundances of four lizard families preyed upon by goannas (skinks, pygopods, agamid lizards and geckos) in areas where cane toads were common or rare. Consistent with the idea that suppression of sand goannas by cane toads initiates a trophic cascade, goanna activity was lower and small lizards were more abundant where toads were common. The hypothesis that suppression of sand goannas by cane toads triggers a trophic cascade was further supported by our findings that small terrestrial lizards that are frequently preyed upon by goannas were more affected by toad abundance than arboreal geckos, which are rarely consumed by goannas. Furthermore, the abundance of at least one genus of terrestrial skinks benefitted from allogenic ecosystem engineering by goannas where toads were rare. Overall, our study provides evidence that the invasion of ecosystems by non-native species can have important effects on the structure and integrity of native communities extending beyond their often most obvious and frequently documented direct ecological effects
- …