210 research outputs found

    When bigger is better: the role of polyploidy in organogenesis

    Get PDF
    Defining how organ size is regulated, a process controlled not only by the number of cells but also by the size of the cells, is a frontier in developmental biology. Large cells are produced by increasing DNA content or ploidy, a developmental strategy employed throughout the plant and animal kingdoms. The widespread use of polyploidy during cell differentiation makes it important to define how this hypertrophy contributes to organogenesis. I discuss here examples from a variety of animals and plants in which polyploidy controls organ size, the size and function of specific tissues within an organ, or the differentiated properties of cells. In addition, I highlight how polyploidy functions in wound healing and tissue regeneration.United States. National Institutes of Health (GM57960)American Cancer Societ

    Bacterial Methane Oxidation and its Influence in the Aquatic Environment

    Get PDF
    This study was supported in part by the Office of Water Resources Research, U.S. Department of the Interior under Project A-027-OHIO.(print) vii, 133 p. : ill. ; 29 cm.Table of Contents -- List of Tables -- List of Figures -- 1. Introduction -- 2. Review of the Literature -- 3. Mixed Culture Growth Studies -- 4. Pure Culture Growth Studies -- 5. Morphology of Methane Oxidizing Bacteria -- 6. Isolation of Intracytoplasmic Membranes -- 7. Lipids of Cells and Membranes -- 8. Proteins of Cells and Membranes -- 9. Summary -- 10. Conclusions and Recommendation

    Polyploidy

    Get PDF
    SummaryPolyploidy is defined as an increase in genome DNA content. Throughout the plant and animal kingdoms specific cell types become polyploid as part of their differentiation programs. When this occurs in subsets of tissues within an organism it is termed somatic polyploidy, because it is distinct from the increase in ploidy that is inherited through the germline and present in every cell type of the organism. Germline polyploidy is common in plants and occurs in some animals, such as amphibians, but will not be discussed further here. Somatic polyploid cells can be mononucleate or multinucleate, and the replicated sister chromatids can remain attached and aligned, producing polytene chromosomes, or they can be dispersed (Figure 1). In this Primer, we focus on why somatic polyploidy occurs and how cells become polyploid — the first of these issues being more speculative, given the status of the field

    The Role of Transcription in the Activation of a Drosophila Amplification Origin

    Get PDF
    The mechanisms that underlie metazoan DNA replication initiation, especially the connection between transcription and replication origin activation, are not well understood. To probe the role of transcription in origin activation, we exploited a specific replication origin in Drosophila melanogaster follicle cells, ori62, which coincides with the yellow-g2 transcription unit and exhibits transcription-dependent origin firing. Within a 10-kb genomic fragment that contains ori62 and is sufficient for amplification, RNA-sequencing analysis revealed that all detected RNAs mapped solely to the yellow-g2 gene. To determine whether transcription is required in cis for ori62 firing, we generated a set of tagged yellow-g2 transgenes in which we could prevent local transcription across ori62 by deletions in the yellow-g2 promoter. Surprisingly, inhibition of yellow-g2 transcription by promoter deletions did not affect ori62 firing. Our results reveal that transcription in cis is not required for ori62 firing, raising the possibility that a trans-acting factor is required specifically for the activation of ori62. This finding illustrates that a diversity of mechanisms can be used in the regulation of metazoan DNA replication initiation.National Institutes of Health (U.S.) (Grant GM57960

    Widespread Changes in the Posttranscriptional Landscape at the Drosophila Oocyte-to-Embryo Transition

    Get PDF
    The oocyte-to-embryo transition marks the onset of development. The initial phase of this profound change from the differentiated oocyte to the totipotent embryo occurs in the absence of both transcription and mRNA degradation. Here we combine global polysome profiling, ribosome-footprint profiling, and quantitative mass spectrometry in a comprehensive approach to delineate the translational and proteomic changes that occur during this important transition in Drosophila. Our results show that PNG kinase is a critical regulator of the extensive changes in the translatome, acting uniquely at this developmental window. Analysis of the proteome in png mutants provided insights into the contributions of translation to changes in protein levels, revealing a compensatory dynamic between translation and protein turnover during proteome remodeling at the return to totipotency. The proteome changes additionally suggested regulators of meiosis and early embryogenesis, including the conserved H3K4 demethylase LID, which we demonstrated is required during this period despite transcriptional inactivity.National Institutes of Health (U.S.) (Grant GM39341

    Developmental Role and Regulation of cortex, a Meiosis-Specific Anaphase-Promoting Complex/Cyclosome Activator

    Get PDF
    During oogenesis in metazoans, the meiotic divisions must be coordinated with development of the oocyte to ensure successful fertilization and subsequent embryogenesis. The ways in which the mitotic machinery is specialized for meiosis are not fully understood. cortex, which encodes a putative female meiosis-specific anaphase-promoting complex/cyclosome (APC/C) activator, is required for proper meiosis in Drosophila. We demonstrate that CORT physically associates with core subunits of the APC/C in ovaries. APC/CCORT targets Cyclin A for degradation prior to the metaphase I arrest, while Cyclins B and B3 are not targeted until after egg activation. We investigate the regulation of CORT and find that CORT protein is specifically expressed during the meiotic divisions in the oocyte. Polyadenylation of cort mRNA is correlated with appearance of CORT protein at oocyte maturation, while deadenylation of cort mRNA occurs in the early embryo. CORT protein is targeted for degradation by the APC/C following egg activation, and this degradation is dependent on an intact D-box in the C terminus of CORT. Our studies reveal the mechanism for developmental regulation of an APC/C activator and suggest it is one strategy for control of the female meiotic cell cycle in a multicellular organism

    University of Kentucky Rural Physician Leadership Program: A Programmatic Review

    Get PDF
    This article describes the characteristics and results of the Rural Physician Leadership Program (RPLP) at the University of Kentucky College of Medicine. RPLP is a successful example of a regional medical campus designed to train physicians at a regional medical campus to serve rural areas through local partnerships

    The Drosophila MOS Ortholog Is Not Essential for Meiosis

    Get PDF
    AbstractIn metazoan oocytes, a metaphase arrest coordinates the completion of meiosis with fertilization. Vertebrate mos maintains the metaphase II arrest of mature oocytes and prevents DNA replication between the meiotic divisions. We identified a Drosophila homolog of mos and showed it to be the mos ortholog by two additional criteria. The dmos transcripts are present in Drosophila oocytes but not embryos, and injection of dmos into Xenopus embryos blocks mitosis and elevates active MAPK levels. In Drosophila, MAPK is activated in oocytes, consistent with a role in meiosis. We generated deletions of dmos and found that, as in vertebrates, dmos is responsible for the majority of MAPK activation. Unexpectedly, the oocytes that do mature complete meiosis normally and produce fertilized embryos that develop, although there is a reduction in female fertility and loss of some oocytes by apoptosis. Therefore, Drosophila contains a mos ortholog that activates a MAPK cascade during oogenesis and is nonessential for meiosis. This could be because there are redundant pathways regulating meiosis, because residual, low levels of active MAPK are sufficient, or because active MAPK is dispensable for meiosis in Drosophila. These results highlight the complexity of meiotic regulation that evolved to ensure accurate control over the reproductive process

    POLO Kinase Regulates the Drosophila Centromere Cohesion Protein MEI-S332

    Get PDF
    AbstractAccurate segregation of chromosomes is critical to ensure that each daughter cell receives the full genetic complement. Maintenance of cohesion between sister chromatids, especially at centromeres, is required to segregate chromosomes precisely during mitosis and meiosis. The Drosophila protein MEI-S332, the founding member of a conserved protein family, is essential in meiosis for maintaining cohesion at centromeres until sister chromatids separate at the metaphase II/anaphase II transition. MEI-S332 localizes onto centromeres in prometaphase of mitosis or meiosis I, remaining until sister chromatids segregate. We elucidated a mechanism for controlling release of MEI-S332 from centromeres via phosphorylation by POLO kinase. We demonstrate that POLO antagonizes MEI-S332 cohesive function and that full POLO activity is needed to remove MEI-S332 from centromeres, yet this delocalization is not required for sister chromatid separation. POLO phosphorylates MEI-S332 in vitro, POLO and MEI-S332 bind each other, and mutation of POLO binding sites prevents MEI-S332 dissociation from centromeres
    • …
    corecore