119 research outputs found

    Cell–Cell Fusion: A New Function for Invadosomes

    Get PDF
    SummaryPodosomes are cytoskeletal-based structures involved in extracellular matrix remodeling and cellular motility. A new study now implicates podosomes in pore formation during myoblast fusion

    Regulation of lysosomal secretion by cortactin drives fibronectin deposition and cell motility

    Get PDF
    Directional cellular movement is required for various organismal processes, including immune defense and cancer metastasis. Proper navigation of migrating cells involves responding to a complex set of extracellular cues, including diffusible chemical signals and physical structural information. In tissues, conflicting gradients and signals may require cells to not only respond to the environment but also modulate it for efficient adhesion formation and directional cell motility. Recently, we found that cells endocytose fibronectin (FN) and resecrete it from a late endosomal/lysosomal (LE/Lys) compartment to provide an autocrine extracellular matrix (ECM) substrate for cell motility. Branched actin assembly regulated by cortactin was required for trafficking of FN-containing vesicles from LE/Lys to the cell surface. These findings suggest a model in which migrating cells use lysosomal secretion as a versatile mechanism to modulate the ECM environment, promote adhesion assembly and enhance directional migration

    A mathematical model quantifies proliferation and motility effects of TGF--β\beta on cancer cells

    Get PDF
    Transforming growth factor (TGF) β\beta is known to have properties of both a tumor suppressor and a tumor promoter. While it inhibits cell proliferation, it also increases cell motility and decreases cell--cell adhesion. Coupling mathematical modeling and experiments, we investigate the growth and motility of oncogene--expressing human mammary epithelial cells under exposure to TGF--β\beta. We use a version of the well--known Fisher--Kolmogorov equation, and prescribe a procedure for its parametrization. We quantify the simultaneous effects of TGF--β\beta to increase the tendency of individual cells and cell clusters to move randomly and to decrease overall population growth. We demonstrate that in experiments with TGF--β\beta treated cells \textit{in vitro}, TGF--β\beta increases cell motility by a factor of 2 and decreases cell proliferation by a factor of 1/2 in comparison with untreated cells.Comment: 15 pages, 4 figures; to appear in Computational and Mathematical Methods in Medicin

    Scalable iPSC-based platform to produce tissue-specific Extracellular Vesicles

    Get PDF
    Please click Additional Files below to see the full abstract

    A Three-Dimensional Computational Model of Collagen Network Mechanics

    Get PDF
    Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell- ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions

    Bves and NDRG4 regulate directional epicardial cell migration through autocrine extracellular matrix deposition

    Get PDF
    Directional cell movement is universally required for tissue morphogenesis. Although it is known that cell/matrix interactions are essential for directional movement in heart development, the mechanisms governing these interactions require elucidation. Here we demonstrate that a novel protein/protein interaction between blood vessel epicardial substance (Bves) and N-myc downstream regulated gene 4 (NDRG4) is critical for regulation of epicardial cell directional movement, as disruption of this interaction randomizes migratory patterns. Our studies show that Bves/NDRG4 interaction is required for trafficking of internalized fibronectin through the “autocrine extracellular matrix (ECM) deposition” fibronectin recycling pathway. Of importance, we demonstrate that Bves/NDRG4-mediated fibronectin recycling is indeed essential for epicardial cell directional movement, thus linking these two cell processes. Finally, total internal reflectance fluorescence microscopy shows that Bves/NDRG4 interaction is required for fusion of recycling endosomes with the basal cell surface, providing a molecular mechanism of motility substrate delivery that regulates cell directional movement. This is the first evidence of a molecular function for Bves and NDRG4 proteins within broader subcellular trafficking paradigms. These data identify novel regulators of a critical vesicle-docking step required for autocrine ECM deposition and explain how Bves facilitates cell-microenvironment interactions in the regulation of epicardial cell–directed movement

    3D Collagen Alignment Limits Protrusions to Enhance Breast Cancer Cell Persistence

    Get PDF
    Patients with mammographically dense breast tissue have a greatly increased risk of developing breast cancer. Dense breast tissue contains more stromal collagen, which contributes to increased matrix stiffness and alters normal cellular responses. Stromal collagen within and surrounding mammary tumors is frequently aligned and reoriented perpendicular to the tumor boundary. We have shown that aligned collagen predicts poor outcome in breast cancer patients, and postulate this is because it facilitates invasion by providing tracks on which cells migrate out of the tumor. However, the mechanisms by which alignment may promote migration are not understood. Here, we investigated the contribution of matrix stiffness and alignment to cell migration speed and persistence. Mechanical measurements of the stiffness of collagen matrices with varying density and alignment were compared with the results of a 3D microchannel alignment assay to quantify cell migration. We further interpreted the experimental results using a computational model of cell migration. We find that collagen alignment confers an increase in stiffness, but does not increase the speed of migrating cells. Instead, alignment enhances the efficiency of migration by increasing directional persistence and restricting protrusions along aligned fibers, resulting in a greater distance traveled. These results suggest that matrix topography, rather than stiffness, is the dominant feature by which an aligned matrix can enhance invasion through 3D collagen matrices
    • …
    corecore