622 research outputs found

    Accommodation requirements for microgravity science and applications research on space station

    Get PDF
    Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station

    Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Get PDF
    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware

    Evaluation of Cardiovascular Risk Scores Applied to NASA's Astronant Corps

    Get PDF
    In an effort to improve cardiovascular disease (CVD) risk prediction, this analysis evaluates and compares the applicability of multiple CVD risk scores to the NASA Astronaut Corps which is extremely healthy at selection

    Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Get PDF
    INTRODUCTION Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors. Thus, the purpose of this project was to perform an initial evaluation of reported post-flight back pain and injury cases to relevant spaceflight risk factors in United States astronauts that have completed an ISS mission. METHODS All US astronauts who completed an ISS mission between Expeditions (EXP) 1 and 41 (2000-2015) were included in this evaluation. Forty-five astronauts (36 males and 9 females) completed 50 ISS missions during the study time period, as 5 astronauts completed 2 ISS missions. Researchers queried medical records of the 45 astronauts for occurrences of back pain and injury. A case was defined as any reported event of back pain or injury to the cervical, thoracic, lumbar, sacral, or coccyx spine regions. Data sources for the cases included the Flight Medicine Clinic's electronic medical record; Astronaut Strength, Conditioning and Rehabilitation electronic documentation; the Private Medical Conference tool; and the Space Medicine Operations Team records. Post-flight cases were classified as an early case if reported within 45 days of landing (R + 45) or a late case if reported from R + 46 to R + 365 days after landing (R + 1y). Risk factors in the astronaut population for back pain include age, sex, prior military service, and prior history of back pain. Additionally, spaceflight specific risk factors such as type of landing vehicle and onboard exercise countermeasures were included to evaluate their contribution to post-flight cases. Prior history of back pain included back pain recorded in the medical record within 3 years prior to launch. Landing vehicle was included in the model to discern if more astronauts experienced back pain or injury following a Shuttle or Soyuz landing. Onboard exercise countermeasures were noted for those astronauts who had a mission following 2009 deployment of the Advanced Resistive Exercise Device (aRED) (EXP 19 to 41). T-test and chi-squared tests were performed to evaluate the association between each individual risk factor and post-flight case. Logistic regression was used to evaluate the combined contribution of all the risk factors on post-flight cases. Separate models were calculated for cases reported by R + 45 and R + 1y. RESULTS During the study time period, there were 13 post-flight cases reported by R + 45 and an additional 5 reported by R + 1y. Most of these cases have been reported since EXP 19 with 10 cases by R + 45 and 4 by R + 1y. Individual risk factors of age, sex, landing vehicle, and prior military service were not significantly associated with post-flight cases identified at R + 45 or R + 1y (p greater than 0.05). Having back pain or injury within 3 years prior to launch significantly increased the likelihood of becoming a case by R + 1y (p = 0.041), but not at R+45 (p=0.204). Additionally, astronauts who experienced onboard exercise countermeasures that included aRED had a significantly increased risk of becoming a case at R + 45 (p = 0.024) and R + 1y (p=0.003). Multiple logistic regression evaluating all the risk factors for cases identified no significant risk factors at either the R + 45 or R + 1y time period (p greater than 0.05). Overall model fit was poor for both the R + 45 (R(exp 2) = 0.132) and R + 1y (R(exp 2) = 0.186) cases showing that there are risk factors not represented in our model. CONCLUSIONS Regardless of cause, post-flight cases are reported more often since aRED was deployed in 2009. This may reflect improved documentation or unidentified risk factors. No spaceflight risk factor explains the data fully. Post-flight cases are probably due to multi-faceted factors that are not easily elucidated in the medical data

    Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    Get PDF
    Training for a spacewalk or extravehicular activity (EVA) is considered a hazardous duty for NASA astronauts. This places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies. The purpose of this paper is to document the comprehensive EVA training data set that was compiled from multiple sources by the Lifetime Surveillance of Astronaut Health (LSAH) epidemiologists to investigate musculoskeletal injuries. The EVA training dataset does not contain any medical data, rather it only documents when EVA training was performed, by whom and other details about the session. The first activities practicing EVA maneuvers in water were performed at the Neutral Buoyancy Simulator (NBS) at the Marshall Spaceflight Center in Huntsville, Alabama. This facility opened in 1967 and was used for EVA training until the early Space Shuttle program days. Although several photographs show astronauts performing EVA training in the NBS, records detailing who performed the training and the frequency of training are unavailable. Paper training records were stored within the NBS after it was designated as a National Historic Landmark in 1985 and closed in 1997, but significant resources would be needed to identify and secure these records, and at this time LSAH has not pursued acquisition of these early training records. Training in the NBS decreased when the Johnson Space Center in Houston, Texas, opened the Weightless Environment Training Facility (WETF) in 1980. Early training records from the WETF consist of 11 hand-written dive logbooks compiled by individual workers that were digitized at the request of LSAH. The WETF was integral in the training for Space Shuttle EVAs until its closure in 1998. The Neutral Buoyancy Laboratory (NBL) at the Sonny Carter Training Facility near JSC opened in March 1997 and is the current site for US EVA training. Other space agencies also have used water to simulate weightlessness and train for EVAs. Russia has a training facility similar to the NBL named the Hydro Lab. The Hydro Lab began operations at the Gagarin Cosmonaut Training Center (GCTC) in 1980 and has been used extensively to the present. Although a majority of training in the Hydro Lab uses the Russian Orlan suit, a small number of sessions have been conducted using a NASA suit. The Japanese Weightlessness Environment Test System (WETS) went into service at the Tsukuba Space Center in 1997 but was closed in 2011 due to extensive earthquake damage. Several sessions were performed using a NASA suit, but these sessions were short and considered "development" runs. LSAH has assembled records from the WETF, NBL and Hydro Lab. Recording of the EVA training data has changed considerably from 1967 to present. The goal of early record keeping was to track use of hardware components, and the person involved was treated as a suited operator, not as a focus of interest. Records from the past two decades are fairly precise with the person, date, suit type and size noted. On occasion the length of the session was listed, but this data is not included on all records. Records were merged from data sources and extensive cleaning of the records was required since the multiple sources frequently overlapped and duplicated records. To date the LSAH EVA training dataset includes over 12,500 EVA training sessions performed by NASA astronauts since 1981. The following variables are included for most records: Name, Sex, Event date, Event name, HUT type, HUT size, Facility, and Estimated run time. For a smaller subset of records, the following variables are available: Actual run time, Time inverted, and the suit components Waist bearing type, Shoulder harness, Shoulder pads, and Teflon inserts. The LSAH dataset is currently the most complete resource for data regarding EVA training sessions performed by NASA astronauts. However, it is not 100 percent complete since the WETS (Japan) and NBS (Marshall) training facility data were not included. This dataset has been compiled by LSAH to study the relationship of EVA training to musculoskeletal injuries but has many other non-medical applications. This dataset can be provided to other groups in order to respond to program and research questions with appropriate board approvals

    Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    Get PDF
    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies

    Injury Surveillance Among NASA Astronauts Using the Barell Injury Diagnosis Matrix

    Get PDF
    Astronauts perform physically demanding tasks and risk incurring musculoskeletal injuries during both groundbased training and missions. Increased injury rates throughout the history of the U.S. space program have been attributed to numerous factors, including an aging astronaut corps, increased Weightless Environment Training Facility (WETF) and Neutral Buoyancy Laboratory (NBL) training to construct the International Space Station, and improved clinical operations that promote injury prevention and reporting. With NASA program changes through the years (including retirement of the Shuttle program) and an improved training environment (including a new astronaut gym), there is no surveillance program to systematically track injury rates. A limited number of research projects have been conducted over the past 20 years to evaluate musculoskeletal injuries: (1) to evaluate orthopedic injuries from 1987 to 1995, (2) to describe upper extremity injuries, (3) to evaluate EVA spacesuit training related injuries, and (4) to evaluate in-flight musculoskeletal injuries. Nevertheless, there has been no consistently performed comprehensive assessment of musculoskeletal injuries among astronauts. The Barell Injury Diagnosis Matrix was introduced at the 2001 meeting of the International Collaborative Effort (ICE) on Injury Statistics. The Matrix proposes a standardized method of classifying body region by nature of injury. Diagnoses are coded using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) coding system. The purpose of this study is to assess the usefulness and complexity of the Barell Injury Diagnosis Matrix to classify and track musculoskeletal injuries among NASA astronauts

    Colonoscopy Screening in the US Astronaut Corps

    Get PDF
    Historically, colonoscopy screenings for astronauts have been conducted to ensure that astronauts are in good health for space missions. This data has been identified as being useful for determining appropriate occupational surveillance targets and requirements. Colonoscopies in the astronaut corps can be used for: (a) Assessing overall colon health, (b) A point of reference for future tests in current and former astronauts, (c) Following-up and tracking rates of colorectal cancer and polyps; and (d) Comparison to military and other terrestrial populations. In 2003, medical screening requirements for the active astronaut corps changed to require less frequent colonoscopies. Polyp removal during a colonoscopy is an intervention that prevents the polyp from potentially developing into cancer and decreases the individual's risk for colon cancer

    The Importance of Data Visualization: Incorporating Storytelling into the Scientific Presentation

    Get PDF
    From its inception in 2000, one of the primary tasks of the Biomedical Data Reduction Analysis (BDRA) group has been translation of large amounts of data into information that is relevant to the audience receiving it. BDRA helps translate data into an integrated model that supports both operational and research activities. This data integrated model and subsequent visual data presentations have contributed to BDRA's success in delivering the message (i.e., the story) that its customers have needed to communicate. This success has led to additional collaborations among groups that had previously not felt they had much in common until they worked together to develop solutions in an integrated fashion. As more emphasis is placed on working with "big data" and on showing how NASA's efforts contribute to the greater good of the American people and of the world, it becomes imperative to visualize the story of our data to communicate the greater message we need to share. METHODS To create and expand its data integrated model, BDRA has incorporated data from many different collaborating partner labs and other sources. Data are compiled from the repositories of the Lifetime Surveillance of Astronaut Health and the Life Sciences Data Archive, and from the individual laboratories at Johnson Space Center that support collection of data from medical testing, environmental monitoring, and countermeasures, as designated in the Medical Requirements Integration Documents. Ongoing communication with the participating collaborators is maintained to ensure that the message and story of the data are retained as data are translated into information and visual data presentations are delivered in different venues and to different audiences. RESULTS We will describe the importance of storytelling through an integrated model and of subsequent data visualizations in today's scientific presentations and discuss the collaborative methods used. We will illustrate the discussion with examples of graphs from BDRA's past work supporting operations and/or research efforts
    • …
    corecore