10 research outputs found

    Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots.

    Get PDF
    Plant cells undergo two types of cell cycles-the mitotic cycle in which DNA replication is coupled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell division. To investigate DNA replication programs in these two types of cell cycles, we pulse labeled intact root tips of maize (Zea mays) with 5-ethynyl-2'-deoxyuridine (EdU) and used flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a mitotic cycle to an endocycle. Comparison of the sequence-based RT profiles showed that most regions of the maize genome replicate at the same time during S phase in mitotic and endocycling cells, despite the need to replicate twice as much DNA in the endocycle and the fact that endocycling is typically associated with cell differentiation. However, regions collectively corresponding to 2% of the genome displayed significant changes in timing between the two types of cell cycles. The majority of these regions are small with a median size of 135 kb, shift to a later RT in the endocycle, and are enriched for genes expressed in the root tip. We found larger regions that shifted RT in centromeres of seven of the ten maize chromosomes. These regions covered the majority of the previously defined functional centromere, which ranged between 1 and 2 Mb in size in the reference genome. They replicate mainly during mid S phase in mitotic cells but primarily in late S phase of the endocycle. In contrast, the immediately adjacent pericentromere sequences are primarily late replicating in both cell cycles. Analysis of CENH3 enrichment levels in 8C vs 2C nuclei suggested that there is only a partial replacement of CENH3 nucleosomes after endocycle replication is complete. The shift to later replication of centromeres and possible reduction in CENH3 enrichment after endocycle replication is consistent with a hypothesis that centromeres are inactivated when their function is no longer needed

    Mammography stages of change in middle-aged women with schizophrenia: An exploratory analysis

    Get PDF
    BACKGROUND: Health care providers and educators who seek to create health promotion programs and individualized comprehensive care plans for women with schizophrenia are hindered by the lack of data to guide their efforts. PURPOSE: This study tested the hypothesis that women with schizophrenia adhere to mammography screening guidelines at the same rate as other same-age women. The study also investigated the validity of the Health Belief (HB) and Stages of Change (SOC) models for breast cancer screening among women with schizophrenia. METHODS: Socio-demographic and clinical variables, as well as knowledge, attitudes, and barriers were assessed as a function of stage of change related to breast cancer screening in 46 women with schizophrenia. RESULTS: Women with schizophrenia were statistically less likely to be adherent to the screening recommendations than those without schizophrenia. Some support was found for the validity of the HB and SOC models for breast cancer screening in women with schizophrenia. Women in the Precontemplation stage had significantly higher negative attitude scores compared to Contemplation and Action/Maintenance stages (59.7, 45.7, and 43.2, respectively), and there was a trend for more barriers in the Precontemplation group (4.6, 2.6, 2.7 respectively). CONCLUSION: Given the small sample size, further research on the rates of breast cancer screening in women with schizophrenia is warranted. Nonetheless, these data suggest that providers who care for women with schizophrenia may need to make take additional measures to ensure that this population receives appropriate screening so as to not put them at greater risk for a late-stage diagnosis of breast cancer. Furthermore, these pilot data suggest that HB and SOC theory-based interventions may be valid for increasing mammography rates in women with schizophrenia

    Repliscan: a tool for classifying replication timing regions

    No full text
    Abstract Background Replication timing experiments that use label incorporation and high throughput sequencing produce peaked data similar to ChIP-Seq experiments. However, the differences in experimental design, coverage density, and possible results make traditional ChIP-Seq analysis methods inappropriate for use with replication timing. Results To accurately detect and classify regions of replication across the genome, we present Repliscan. Repliscan robustly normalizes, automatically removes outlying and uninformative data points, and classifies Repli-seq signals into discrete combinations of replication signatures. The quality control steps and self-fitting methods make Repliscan generally applicable and more robust than previous methods that classify regions based on thresholds. Conclusions Repliscan is simple and effective to use on organisms with different genome sizes. Even with analysis window sizes as small as 1 kilobase, reliable profiles can be generated with as little as 2.4x coverage

    Chromatin structure profile data from DNS-seq: Differential nuclease sensitivity mapping of four reference tissues of B73 maize (Zea mays L)

    No full text
    Presented here are data from Next-Generation Sequencing of differential micrococcal nuclease digestions of formaldehyde-crosslinked chromatin in selected tissues of maize (Zea mays) inbred line B73. Supplemental materials include a wet-bench protocol for making DNS-seq libraries, the DNS-seq data processing pipeline for producing genome browser tracks. This report also includes the peak-calling pipeline using the iSeg algorithm to segment positive and negative peaks from the DNS-seq difference profiles. The data repository for the sequence data is the NCBI SRA, BioProject Accession PRJNA445708
    corecore