525 research outputs found
A GPU based real-time software correlation system for the Murchison Widefield Array prototype
Modern graphics processing units (GPUs) are inexpensive commodity hardware
that offer Tflop/s theoretical computing capacity. GPUs are well suited to many
compute-intensive tasks including digital signal processing.
We describe the implementation and performance of a GPU-based digital
correlator for radio astronomy. The correlator is implemented using the NVIDIA
CUDA development environment. We evaluate three design options on two
generations of NVIDIA hardware. The different designs utilize the internal
registers, shared memory and multiprocessors in different ways. We find that
optimal performance is achieved with the design that minimizes global memory
reads on recent generations of hardware.
The GPU-based correlator outperforms a single-threaded CPU equivalent by a
factor of 60 for a 32 antenna array, and runs on commodity PC hardware. The
extra compute capability provided by the GPU maximises the correlation
capability of a PC while retaining the fast development time associated with
using standard hardware, networking and programming languages. In this way, a
GPU-based correlation system represents a middle ground in design space between
high performance, custom built hardware and pure CPU-based software
correlation.
The correlator was deployed at the Murchison Widefield Array 32 antenna
prototype system where it ran in real-time for extended periods. We briefly
describe the data capture, streaming and correlation system for the prototype
array.Comment: 11 pages, to appear in PAS
The lens and source of the optical Einstein ring gravitational lens ER 0047-2808
(Abridged) We perform a detailed analysis of the optical gravitational lens
ER 0047-2808 imaged with WFPC2 on the Hubble Space Telescope. Using software
specifically designed for the analysis of resolved gravitational lens systems,
we focus on how the image alone can constrain the mass distribution in the lens
galaxy. We find the data are of sufficient quality to strongly constrain the
lens model with no a priori assumptions about the source. Using a variety of
mass models, we find statistically acceptable results for elliptical
isothermal-like models with an Einstein radius of 1.17''. An elliptical
power-law model (Sigma \propto R^-beta) for the surface mass density favours a
slope slightly steeper than isothermal with beta = 1.08 +/- 0.03. Other models
including a constant M/L, pure NFW halo and (surprisingly) an isothermal sphere
with external shear are ruled out by the data. We find the galaxy light profile
can only be fit with a Sersic plus point source model. The resulting total
M/L_B contained within the images is 4.7 h_65 +/-0.3. In addition, we find the
luminous matter is aligned with the total mass distribution within a few
degrees. The source, reconstructed by the software, is revealed to have two
bright regions, with an unresolved component inside the caustic and a resolved
component straddling a fold caustic. The angular size of the entire source is
approx. 0.1'' and its (unlensed) Lyman-alpha flux is 3 x 10^-17 erg/s/cm^2.Comment: 13 pages, 5 figures. Revised version accepted for publication in
MNRA
Direction-Dependent Polarised Primary Beams in Wide-Field Synthesis Imaging
The process of wide-field synthesis imaging is explored, with the aim of
understanding the implications of variable, polarised primary beams for
forthcoming Epoch of Reionisation experiments. These experiments seek to detect
weak signatures from redshifted 21cm emission in deep residual datasets, after
suppression and subtraction of foreground emission. Many subtraction algorithms
benefit from low side-lobes and polarisation leakage at the outset, and both of
these are intimately linked to how the polarised primary beams are handled.
Building on previous contributions from a number of authors, in which
direction-dependent corrections are incorporated into visibility gridding
kernels, we consider the special characteristics of arrays of fixed dipole
antennas operating around 100-200 MHz, looking towards instruments such as the
Square Kilometre Array (SKA) and the Hydrogen Epoch of Reionization Arrays
(HERA). We show that integrating snapshots in the image domain can help to
produce compact gridding kernels, and also reduce the need to make complicated
polarised leakage corrections during gridding. We also investigate an
alternative form for the gridding kernel that can suppress variations in the
direction-dependent weighting of gridded visibilities by 10s of dB, while
maintaining compact support.Comment: 15 pages, 4 figures. Accepted for publication in JA
Spectral ageing in the era of big data : Integrated versus resolved models
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Continuous injection models of spectral ageing have long been used to determine the age of radio galaxies from their integrated spectrum; however, many questions about their reliability remain unanswered. With various large area surveys imminent (e.g. LOw Frequency ARray, MeerKAT, MurchisonWidefield Array) and planning for the next generation of radio interferometers are well underway (e.g. next generationVLA, SquareKilometreArray), investigations of radio galaxy physics are set to shift away from studies of individual sources to the population as a whole. Determining if and how integrated models of spectral ageing can be applied in the era of big data is therefore crucial. In this paper, I compare classical integrated models of spectral ageing to recent well-resolved studies that use modern analysis techniques on small spatial scales to determine their robustness and validity as a source selection method. I find that integrated models are unable to recover key parameters and, even when known a priori, provide a poor, frequency-dependent description of a source's spectrum. I show a disparity of up to a factor of 6 in age between the integrated and resolved methods but suggest, even with these inconsistencies, such models still provide a potential method of candidate selection in the search for remnant radio galaxies and in providing a cleaner selection of high redshift radio galaxies in z - α selected samples.Peer reviewe
Enabling a High Throughput Real Time Data Pipeline for a Large Radio Telescope Array with GPUs
The Murchison Widefield Array (MWA) is a next-generation radio telescope
currently under construction in the remote Western Australia Outback. Raw data
will be generated continuously at 5GiB/s, grouped into 8s cadences. This high
throughput motivates the development of on-site, real time processing and
reduction in preference to archiving, transport and off-line processing. Each
batch of 8s data must be completely reduced before the next batch arrives.
Maintaining real time operation will require a sustained performance of around
2.5TFLOP/s (including convolutions, FFTs, interpolations and matrix
multiplications). We describe a scalable heterogeneous computing pipeline
implementation, exploiting both the high computing density and FLOP-per-Watt
ratio of modern GPUs. The architecture is highly parallel within and across
nodes, with all major processing elements performed by GPUs. Necessary
scatter-gather operations along the pipeline are loosely synchronized between
the nodes hosting the GPUs. The MWA will be a frontier scientific instrument
and a pathfinder for planned peta- and exascale facilities.Comment: Version accepted by Comp. Phys. Com
A VLBA search for binary black holes in active galactic nuclei with double-peaked optical emission line spectra
We have examined a subset of 11 active galactic nuclei (AGN) drawn from a
sample of 87 objects that possess double-peaked optical emission line spectra,
as put forward by Wang et al. (2009a) and are detectable in the FIRST survey at
radio wavelengths. The double-peaked nature of the optical emission line
spectra has been suggested as evidence for the existence of binary black holes
in these AGN, although this interpretation is controversial. We make a simple
suggestion, that direct evidence of binary black holes in these objects could
be searched for in the form of dual sources of compact radio emission
associated with the AGN. To explore this idea, we have used the Very Long
Baseline Array to observe these 11 objects from the Wang et al. (2009a) sample.
Of the 11 objects, we detect compact radio emission from two, SDSS
J151709+335324 and SDSS J160024+264035. Both objects show single components of
compact radio emission. The morphology of SDSS J151709+335324 is consistent
with a recent comprehensive multi-wavelength study of this object by Rosario et
al. (2010). Assuming that the entire sample consists of binary black holes, we
would expect of order one double radio core to be detected, based on radio
wavelength detection rates from FIRST and VLBI surveys. We have not detected
any double cores, thus this work does not substantially support the idea that
AGN with double-peaked optical emission lines contain binary black holes.
However, the study of larger samples should be undertaken to provide a more
secure statistical result, given the estimated detection rates.Comment: 14 pages, 3 figures. To appear in A
DiFX2: A more flexible, efficient, robust and powerful software correlator
Software correlation, where a correlation algorithm written in a high-level
language such as C++ is run on commodity computer hardware, has become
increasingly attractive for small to medium sized and/or bandwidth constrained
radio interferometers. In particular, many long baseline arrays (which
typically have fewer than 20 elements and are restricted in observing bandwidth
by costly recording hardware and media) have utilized software correlators for
rapid, cost-effective correlator upgrades to allow compatibility with new,
wider bandwidth recording systems and improve correlator flexibility. The DiFX
correlator, made publicly available in 2007, has been a popular choice in such
upgrades and is now used for production correlation by a number of
observatories and research groups worldwide. Here we describe the evolution in
the capabilities of the DiFX correlator over the past three years, including a
number of new capabilities, substantial performance improvements, and a large
amount of supporting infrastructure to ease use of the code. New capabilities
include the ability to correlate a large number of phase centers in a single
correlation pass, the extraction of phase calibration tones, correlation of
disparate but overlapping sub-bands, the production of rapidly sampled
filterbank and kurtosis data at minimal cost, and many more. The latest version
of the code is at least 15% faster than the original, and in certain situations
many times this value. Finally, we also present detailed test results
validating the correctness of the new code.Comment: 28 pages, 9 figures, accepted for publication in PAS
Astrophysical Supercomputing with GPUs: Critical Decisions for Early Adopters
General purpose computing on graphics processing units (GPGPU) is
dramatically changing the landscape of high performance computing in astronomy.
In this paper, we identify and investigate several key decision areas, with a
goal of simplyfing the early adoption of GPGPU in astronomy. We consider the
merits of OpenCL as an open standard in order to reduce risks associated with
coding in a native, vendor-specific programming environment, and present a GPU
programming philosophy based on using brute force solutions. We assert that
effective use of new GPU-based supercomputing facilities will require a change
in approach from astronomers. This will likely include improved programming
training, an increased need for software development best-practice through the
use of profiling and related optimisation tools, and a greater reliance on
third-party code libraries. As with any new technology, those willing to take
the risks, and make the investment of time and effort to become early adopters
of GPGPU in astronomy, stand to reap great benefits.Comment: 13 pages, 5 figures, accepted for publication in PAS
When Darwin Met Einstein: Gravitational Lens Inversion with Genetic Algorithms
Gravitational lensing can magnify a distant source, revealing structural
detail which is normally unresolvable. Recovering this detail through an
inversion of the influence of gravitational lensing, however, requires
optimisation of not only lens parameters, but also of the surface brightness
distribution of the source. This paper outlines a new approach to this
inversion, utilising genetic algorithms to reconstruct the source profile. In
this initial study, the effects of image degradation due to instrumental and
atmospheric effects are neglected and it is assumed that the lens model is
accurately known, but the genetic algorithm approach can be incorporated into
more general optimisation techniques, allowing the optimisation of both the
parameters for a lensing model and the surface brightness of the source.Comment: 9 pages, to appear in PAS
- …
