12,323 research outputs found

    Absolute 1* quantum yields for the ICN A state by diode laser gain versus absorption spectroscopy

    Get PDF
    Absolute I* quantum yields were measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The temperature yields are obtained by the technique of time-resolved diode laser gain-versus-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 +/- 2% and it falls off to 53.4 +/- 2% and 44.0 +/- 4% at 284 and 248 respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I* quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I* yields. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I* yield results

    Ultrafast dynamics of neutral superexcited Oxygen: A direct measurement of the competition between autoionization and predissociation

    Full text link
    Using ultrafast extreme ultraviolet pulses, we performed a direct measurement of the relaxation dynamics of neutral superexcited states corresponding to the nl\sigma_g(c^4\Sigma_u^-) Rydberg series of O_2. An XUV attosecond pulse train was used to create a temporally localized Rydberg wavepacket and the ensuing electronic and nuclear dynamics were probed using a time-delayed femtosecond near-infrared pulse. We investigated the competing predissociation and autoionization mechanisms for superexcited molecules and found that autoionization is dominant for the low n Rydberg states. We measured an autoionization lifetime of 92+/-6 fs and 180+/-10 fs for (5s,4d)\sigma_g and (6s,5d)\sigma_g Rydberg state groups respectively. We determine that the disputed neutral dissociation lifetime for the \nu=0 vibrational level of the Rydberg series is 1100+/-100fs.Comment: 5 pages, 4 figure

    Competitive partitioning of rotational energy in gas ensemble equilibration

    Get PDF
    A wide-ranging computational study of equilibration in binary mixtures of diatomic gases reveals the existence of competition between the constituent species for the orbital angular momentum and energy available on collision with the bath gas. The ensembles consist of a bath gas AB(v;j), and a highly excited minor component CD(v';j'), present in the ratio AB:CD = 10:1. Each ensemble contains 8000 molecules. Rotational temperatures (T(r)) are found to differ widely at equilibration with T(r)(AB)/T(r)(CD) varying from 2.74 to 0.92, indicating unequal partitioning of rotational energy and angular momentum between the two species. Unusually, low values of T(r) are found generally to be associated with diatomics of low reduced mass. To test effects of the equi-partition theorem on low T(r) we undertook calculations on HF(6;4) in N(2)(0;10) over the range 100-2000 K. No significant change in T(r)(N2)/T(r)(HF) was found. Two potential sources of rotational inequality are examined in detail. The first is possible asymmetry of -Δj and +Δj probabilities for molecules in mid- to high j states resulting from the quadratic dependence of rotational energy on j. The second is the efficiency of conversion of orbital angular momentum, generated on collision with bath gas molecules, into molecular rotation. Comparison of these two possible effects with computed T(r)(AB)/T(r)(CD) shows the efficiency factor to be an excellent predictor of partitioning between the two species. Our finding that T(r) values for molecules such as HF and OH are considerably lower than other modal temperatures suggests that the determination of gas ensemble temperatures from Boltzmann fits to rotational distributions of diatomics of low reduced mass may require a degree of caution

    Real-time demonstration hardware for enhanced DPCM video compression algorithm

    Get PDF
    The lack of available wideband digital links as well as the complexity of implementation of bandwidth efficient digital video CODECs (encoder/decoder) has worked to keep the cost of digital television transmission too high to compete with analog methods. Terrestrial and satellite video service providers, however, are now recognizing the potential gains that digital video compression offers and are proposing to incorporate compression systems to increase the number of available program channels. NASA is similarly recognizing the benefits of and trend toward digital video compression techniques for transmission of high quality video from space and therefore, has developed a digital television bandwidth compression algorithm to process standard National Television Systems Committee (NTSC) composite color television signals. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a non-adaptive predictor, non-uniform quantizer and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The non-adaptive predictor and multilevel Huffman coder combine to set this technique apart from other DPCM encoding algorithms. All processing is done on a intra-field basis to prevent motion degradation and minimize hardware complexity. Computer simulations have shown the algorithm will produce broadcast quality reconstructed video at an average transmission rate of 1.8 bits/pixel. Hardware implementation of the DPCM circuit, non-adaptive predictor and non-uniform quantizer has been completed, providing realtime demonstration of the image quality at full video rates. Video sampling/reconstruction circuits have also been constructed to accomplish the analog video processing necessary for the real-time demonstration. Performance results for the completed hardware compare favorably with simulation results. Hardware implementation of the multilevel Huffman encoder/decoder is currently under development along with implementation of a buffer control algorithm to accommodate the variable data rate output of the multilevel Huffman encoder. A video CODEC of this type could be used to compress NTSC color television signals where high quality reconstruction is desirable (e.g., Space Station video transmission, transmission direct-to-the-home via direct broadcast satellite systems or cable television distribution to system headends and direct-to-the-home)

    How Much Do Firms Hedge With Derivatives?

    Get PDF
    For 234 large non-financial corporations using derivatives, we report the magnitude of their risk exposure hedged by financial derivatives. If interest rates, currency exchange rates, and commodity prices change simultaneously by three standard deviations, the median firm\u27s derivatives portfolio, at most, generates 15millionincashand15 million in cash and 31 million in value. These amounts are modest relative to firm size, and operating and investing cash flows, and other benchmarks. Corporate derivatives use appears to be a small piece of non-financial firms’ overall risk profile. This suggests a need to rethink past empirical research documenting the importance of firms’ derivative use

    The USL NASA PC R and D project: Detailed specifications of objects

    Get PDF
    The specifications for a number of projects which are to be implemented within the University of Southwestern Louisiana NASA PC R and D Project are discussed. The goals and objectives of the PC development project and the interrelationships of the various components are discussed. Six projects are described. They are a NASA/RECON simulator, a user interface to multiple remote information systems, evaluation of various personal computer systems, statistical analysis software development, interactive presentation system development, and the development of a distributed processing environment. The relationships of these projects to one another and to the goals and objectives of the overall project are discussed

    A report on the USL NASA/RECON project. Part 2: PC-based R and D in support of IS and R applications

    Get PDF
    This Working Paper Series entry describes the PC R and D development effort initiated as part of the NASA/RECON Project at the University of Southwestern Louisiana. This effort involves the development of a PC-based environment for the prototyping and evaluation of various tools designed to enhance the interaction between scientists and engineers and remote information systems. The design of PC-based tools for the enhancement of the NASA/RECON university-level courses is described as well as the design of a multi-functional PC-based workstation to support access to and processing of information from local, distributed, and remote sources. Course preparation activities are described in a companion report entitled A Report on the USL NASA/RECON Project: Part 1, the Development of a Transportable, University-Level, IS and R Educational Program, by Suzy Gallagher and Martin Granier, USL/DBMS NASA/RECON Working Paper Series report number DBMS.NASA/RECON-7

    Surface characterization of selected LDEF tray clamps

    Get PDF
    The surface characterization of chromic acid anodized 6061-T6 aluminum alloy tray clamps has shown differences in surface chemistry depending upon the position on the Long Duration Exposure Facility (LDEF). Water contact angle results showed no changes in wettability of the tray clamps. The overall surface topography of the control, trailing edge(E3) and leading edge(D9) samples was similar. The thickness of the aluminum oxide layer for all samples determined by Auger depth profiling was less than one micron. X-ray photoelectron spectroscopy (XPS) analysis of the tray clamps showed significant differences in the surface composition. Carbon and silicon containing compounds were the primary contaminants detected

    Properties of Implied Cost of Capital Using Analysts’ Forecasts

    Get PDF
    We evaluate the influence of measurement error in analysts’ forecasts on the accuracy of implied cost of capital estimates from various implementations of the ‘implied cost of capital’ approach, and develop corrections for the measurement error. The implied cost of capital approach relies on analysts’ short- and long-term earnings forecasts as proxies for the market’s expectation of future earnings, and solves for the implied discount rate that equates the present value of the expected future payoffs to the current stock price. We document predictable error in the implied cost of capital estimates resulting from analysts’ forecasts that are sluggish with respect to information in past stock returns. We propose two methods to mitigate the influence of sluggish forecasts on the implied cost of capital estimates. These methods substantially improve the ability of the implied cost of capital estimates to explain cross-sectional variation in future stock returns, which is consistent with the corrections being effective in mitigating the error in the estimates due to analysts’ sluggishness

    Impact of reionization on CMB polarization tests of slow-roll inflation

    Full text link
    Estimates of inflationary parameters from the CMB B-mode polarization spectrum on the largest scales depend on knowledge of the reionization history, especially at low tensor-to-scalar ratio. Assuming an incorrect reionization history in the analysis of such polarization data can strongly bias the inflationary parameters. One consequence is that the single-field slow-roll consistency relation between the tensor-to-scalar ratio and tensor tilt might be excluded with high significance even if this relation holds in reality. We explain the origin of the bias and present case studies with various tensor amplitudes and noise characteristics. A more model-independent approach can account for uncertainties about reionization, and we show that parametrizing the reionization history by a set of its principal components with respect to E-mode polarization removes the bias in inflationary parameter measurement with little degradation in precision.Comment: 9 pages, 6 figures; submitted to Phys. Rev.
    • …
    corecore