19 research outputs found

    The Dome Technique for Managing Massive Anterosuperior Medial Acetabular Bone Loss in Revision Total Hip Arthroplasty: Short-Term Outcomes

    Get PDF
    PURPOSE: The dome technique is a technique used in performance of revision total hip arthroplasty (THA) involving intraoperative joining of two porous metal acetabular augments to fill a massive anterosuperior medial acetabular bone defect. While excellent outcomes were achieved using this surgical technique in a series of three cases, short-term results have not been reported. We hypothesized that excellent short-term clinical and patient reported outcomes could be achieved with use of the dome technique. MATERIALS AND METHODS: A multicenter case series was conducted for evaluation of patients who underwent revision THA using the dome technique for management of Paprosky 3B anterosuperior medial acetabular bone loss from 2013-2019 with a minimum clinical follow-up period of two years. Twelve cases in 12 patients were identified. Baseline demographics, intraoperative variables, surgical outcomes, and patient reported outcomes were acquired. RESULTS: The implant survivorship was 91% with component failure requiring re-revision in only one patient at a mean follow-up period of 36.2 months (range, 24-72 months). Three patients (25.0%) experienced complications, including re-revision for component failure, inter-prosthetic dual-mobility dissociation, and periprosthetic joint infection. Of seven patients who completed the HOOS, JR (hip disability and osteoarthritis outcome score, joint replacement) survey, five patients showed improvement. CONCLUSION: Excellent outcomes can be achieved using the dome technique for management of massive anterosuperior medial acetabular defects in revision THA with survivorship of 91% at a mean follow-up period of three years. Conduct of future studies will be required in order to evaluate mid- to long-term outcomes for this technique

    Stem diameter and rotational stability in revision total hip arthroplasty: a biomechanical analysis

    Get PDF
    BACKGROUND: Proximal femoral bone loss during revision hip arthroplasty often requires bypassing the deficient metaphyseal bone to obtain distal fixation. The purpose of this study was to determine the effect of stem diameter and length of diaphyseal contact in achieving rotational stability in revision total hip arthroplasty. METHODS: Twenty-four cadaveric femoral specimens were implanted with a fully porous-coated stem. Two different diameters were tested and the stems were implanted at multiple contact lengths without proximal bone support. Each specimen underwent torsional testing to failure and rotational micromotion was measured at the implant-bone interface. RESULTS: The larger stem diameter demonstrated a greater torsional stability for a given length of cortical contact (p ≤ 0.05). Decreasing length of diaphyseal contact length was associated with less torsional stability. Torsional resistance was inconsistent at 2 cm of depth. CONCLUSION: Larger stem diameters frequently used in revisions may be associated with less diaphyseal contact length to achieve equivalent rotational stability compared to smaller diameter stems. Furthermore, a minimum of 3 cm or 4 cm of diaphyseal contact with a porous-coated stem should be achieved in proximal femoral bone deficiency and will likely be dependent on the stem diameter utilized at the time of surgery

    Computer-assisted navigation as a diagnostic tool in revision total hip arthroplasty: A case report

    No full text
    Revision total hip arthroplasty is a costly procedure accounting for approximately 14% of all hip arthroplasties. Compounding the cost considerations is the potential for serious injury to the patient when removing existing components. Such injury can result in not only increased morbidity but also dramatically increased costs. The use of computer-assisted navigation in revision total hip arthroplasty, while relatively uncommon, offers surgeons the ability to measure component position and orientation intraoperatively, thus allowing them the opportunity to modify their surgical plan, with the potential for decreasing both costs and iatrogenic injury. Here, we report a case of revision total hip arthroplasty where the use of computer-assisted navigation as a diagnostic tool allowed for intraoperative alterations in surgical plan and resulted in improved post-operative outcomes

    The Use of Trabecular Metal Cones in Complex Primary and Revision Total Knee Arthroplasty.

    No full text
    Trabecular metal cones are one option for treating osseous defects during TKA. A total of 83 consecutive TKAs utilizing cones with an average of 40 months follow-up were reviewed. There were 24 males and 59 females, with an average age of 69 years old. Four were complex primary and 79 were revision procedures. Of 83 patients, 10 (12%) required repeat revision surgery (8 infections, one periprosthetic fracture, one aseptic loosening) and overall, 37 of 83 patients (45%) experienced at least one complication. Of 73 unrevised knees, 72 (99%) demonstrated radiographic evidence of osseointegration. Despite a high complication rate in this population, trabecular metal cones represent an attractive option for managing bone loss in complex primary and revision TKA with a high rate of osseointegration
    corecore