1,128 research outputs found
Fuels and chemicals from biomass using solar thermal energy
The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry
Phase transitions of nematic rubbers
Single crystal nematic elastomers undergo a transition from a strongly
ordered phase N to an "isotropic" phase I. We show that: (a) samples produced
under tension by the Finkelmann procedure are intrinsically anisotropic and
should show a small (temperature dependent) birefringence in the high
temperature I phase. (b) for the I->Ntransition via cooling there is a spinodal
limit but for the N->I transition via heating there is no soft mode at the
standard spinodal temperature. (c) the N->I transition is reminiscent of a
martensitic transformation: nucleation of the I phase should occur in the form
of platelets, making a well defined angle with the director.Comment: 7 pages, 3 figures (To appear in Europhys. Lett.
Morphology and Chemistry of two Ancient Woods
Wood specimens obtained from rubble ore in iron mines in northern Quebec were shown to be white pine of about 10 million years and probably redwood of about 100 million years. The ancient pine, 0.80 specific gravity, largely retained its structure, but had lost most of its carbohydrate material. Its residual cellulose was amorphous. The lignin was extensively demethylated, and there was evidence of condensed ring structures. In contrast, the older redwood, 1.24 specific gravity, was highly compressed and contained numerous resin beads in the strand and ray parenchyma cells. It consisted almost entirely of lignin, with about two-thirds of the methoxyl content retained, and there was no evidence of coalification
Catastrophic Fermi surface reconstruction in the shape-memory alloy AuZn
AuZn undergoes a shape-memory transition at 67 K. The de Haas van Alphen
effect persists to 100 K enabling the observation of a change in the quantum
oscillation spectrum indicative of a catastrophic Fermi surface reconstruction
at the transition. Coexistence of both Fermi surfaces at low temperatures is
suggestive of an intrinsic phase separation in the bulk of the material. In
addition, a Dingle analysis reveals a sharp change in the scattering mechanism
at a threshold cyclotron radius, which we suggest to be related to the
underlying microstructure that drives the shape-memory effect.Comment: 4 pages, 4 figure
Crystallographic structure of ultrathin Fe films on Cu(100)
We report bcc-like crystal structures in 2-4 ML Fe films grown on fcc Cu(100)
using scanning tunneling microscopy. The local bcc structure provides a
straightforward explanation for their frequently reported outstanding magnetic
properties, i.e., ferromagnetic ordering in all layers with a Curie temperature
above 300 K. The non-pseudomorphic structure, which becomes pseudomorphic above
4 ML film thickness is unexpected in terms of conventional rules of thin film
growth and stresses the importance of finite thickness effects in ferromagnetic
ultrathin films.Comment: 4 pages, 3 figures, RevTeX/LaTeX2.0
Fermi Surface as a Driver for the Shape-Memory Effect in AuZn
Martensites are materials that undergo diffusionless, solid-state
transitions. The martensitic transition yields properties that depend on the
history of the material and may allow it to recover its previous shape after
plastic deformation. This is known as the shape-memory effect (SME). We have
succeeded in identifying the primary electronic mechanism responsible for the
martensitic transition in the shape-memory alloy AuZn by using Fermi-surface
measurements (de Haas-van Alphen oscillations) and band-structure calculations.
This strongly suggests that electronic band structure is an important
consideration in the design of future SME alloys
Size of Orbital Ordering Domain Controlled by the Itinerancy of the 3d Electrons in a Manganite Thin Film
An electronic effect on a macroscopic domain structure is found in a strongly
correlated half-doped manganite film NdSrMnO3 grown on a (011)
surface of SrTiO3. The sample has a high-temperature (HT) phase free from
distortion above 180K and two low-temperature (LT) phases with a large
shear-mode strain and a concomitant twin structure. One LT phase has a large
itinerancy (A-type), and the other has a small itinerancy (CE-type), while the
lattice distortions they cause are almost equal. Our x ray diffraction
measurement shows that the domain size of the LT phase made by the HT-CE
transition is much smaller than that by the HT-A transition, indicating that
the difference in domain size is caused by the electronic states of the LT
phases.Comment: 9 pages, 4 figure
"Cold Melting" of Invar Alloys
An anomalously strong volume magnetostriction in Invars may lead to a
situation when at low temperatures the dislocation free energy becomes negative
and a multiple generation of dislocations becomes possible. This generation
induces a first order phase transition from the FCC crystalline to an amorphous
state, and may be called "cold melting". The possibility of the cold melting in
Invars is connected with the fact that the exchange energy contribution into
the dislocation self energy in Invars is strongly enhanced, as compared to
conventional ferromagnetics, due to anomalously strong volume magnetostriction.
The possible candidate, where this effect can be observed, is a FePt disordered
Invar alloy in which the volume magnetostriction is especially large
Zebrafish Reproduction: Revisiting In Vitro Fertilization to Increase Sperm Cryopreservation Success
Although conventional cryopreservation is a proven method for long-term, safe storage of genetic material, protocols used by the zebrafish community are not standardized and yield inconsistent results, thereby putting the security of many genotypes in individual laboratories and stock centers at risk. An important challenge for a successful zebrafish sperm cryopreservation program is the large variability in the post-thaw in vitro fertilization success (0 to 80%). But how much of this variability was due to the reproductive traits of the in vitro fertilization process, and not due to the cryopreservation process? These experiments only assessed the in vitro process with fresh sperm, but yielded the basic metrics needed for successful in vitro fertilization using cryopreserved sperm, as well. We analyzed the reproductive traits for zebrafish males with a strict body condition range. It did not correlate with sperm volume, or motility (P>0.05), but it did correlate with sperm concentration. Younger males produced more concentrated sperm (P<0.05). To minimize the wastage of sperm during the in vitro fertilization process, 106 cells/ml was the minimum sperm concentration needed to achieve an in vitro fertilization success of ≥ 70%. During the in vitro process, pooling sperm did not reduce fertilization success (P>0.05), but pooling eggs reduced it by approximately 30 to 50% (P<0.05). This reduction in fertilization success was due not to the pooling of the females' eggs, but to the type of tools used to handle the eggs. Recommendations to enhance the in vitro process for zebrafish include: 1) using males of a body condition closer to 1.5 for maximal sperm concentration; 2) minimizing sperm wastage by using a working sperm concentration of 106 motile cells/ml for in vitro fertilization; and 3) never using metal or sharp-edged tools to handle eggs prior to fertilization
- …