48 research outputs found

    Grunt variation in the oyster toadfish Opsanus tau: effect of size and sex

    Get PDF
    As in insects, frogs and birds, vocal activity in fishes tends to be more developed in males than in females, and sonic swimbladder muscles may be sexually dimorphic, i.e., either larger in males or present only in males. Male oyster toadfish Opsanus tau L produce a long duration, tonal boatwhistle advertisement call, and both sexes grunt, a short duration more pulsatile agonistic call. Sonic muscles are present in both sexes but larger in males. We tested the hypothesis that males would call more than females by inducing grunts in toadfish of various sizes held in a net and determined incidence of calling and developmental changes in grunt parameters. A small number of fish were recorded twice to examine call repeatability. Both sexes were equally likely to grunt, and grunt parameters (sound pressure level (SPL), individual range in SPL, number of grunts, and fundamental frequency) were similar in both sexes. SPL increased with fish size before leveling off in fish \u3e200 g, and fundamental frequency and other parameters did not change with fish size. Number of grunts in a train, grunt duration and inter-grunt interval were highly variable in fish recorded twice suggesting that grunt parameters reflect internal motivation rather than different messages. Grunt production may explain the presence of well-developed sonic muscles in females and suggests that females have an active but unexplored vocal life

    Preclinical and clinical biomarker studies of CT1812: A novel approach to Alzheimer's disease modification

    Get PDF
    INTRODUCTION: Amyloid beta (Aβ) oligomers are one of the most toxic structural forms of the Aβ protein and are hypothesized to cause synaptotoxicity and memory failure as they build up in Alzheimer's disease (AD) patients' brain tissue. We previously demonstrated that antagonists of the sigma-2 receptor complex effectively block Aβ oligomer toxicity. CT1812 is an orally bioavailable, brain penetrant small molecule antagonist of the sigma-2 receptor complex that appears safe and well tolerated in healthy elderly volunteers. We tested CT1812's effect on Aβ oligomer pathobiology in preclinical AD models and evaluated CT1812's impact on cerebrospinal fluid (CSF) protein biomarkers in mild to moderate AD patients in a clinical trial (ClinicalTrials.gov NCT02907567). METHODS: Experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer binding to synapses in vitro, to human AD patient post mortem brain tissue ex vivo, and in living APPSwe /PS1dE9 transgenic mice in vivo. Additional experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer-induced deficits in membrane trafficking rate, synapse number, and protein expression in mature hippocampal/cortical neurons in vitro. The impact of CT1812 on cognitive function was measured in transgenic Thy1 huAPPSwe/Lnd+ and wild-type littermates. A multicenter, double-blind, placebo-controlled parallel group trial was performed to evaluate the safety, tolerability, and impact on protein biomarker expression of CT1812 or placebo given once daily for 28 days to AD patients (Mini-Mental State Examination 18-26). CSF protein expression was measured by liquid chromatography with tandem mass spectrometry or enzyme-linked immunosorbent assay in samples drawn prior to dosing (Day 0) and at end of dosing (Day 28) and compared within each patient and between pooled treated versus placebo-treated dosing groups. RESULTS: CT1812 significantly and dose-dependently displaced Aβ oligomers bound to synaptic receptors in three independent preclinical models of AD, facilitated oligomer clearance into the CSF, increased synaptic number and protein expression in neurons, and improved cognitive performance in transgenic mice. CT1812 significantly increased CSF concentrations of Aβ oligomers in AD patient CSF, reduced concentrations of synaptic proteins and phosphorylated tau fragments, and reversed expression of many AD-related proteins dysregulated in CSF. DISCUSSION: These preclinical studies demonstrate the novel disease-modifying mechanism of action of CT1812 against AD and Aβ oligomers. The clinical results are consistent with preclinical data and provide evidence of target engagement and impact on fundamental disease-related signaling pathways in AD patients, supporting further development of CT1812

    Preclinical and clinical biomarker studies of CT1812:A novel approach to Alzheimer's disease modification

    Get PDF
    INTRODUCTION: Amyloid beta (Aβ) oligomers are one of the most toxic structural forms of the Aβ protein and are hypothesized to cause synaptotoxicity and memory failure as they build up in Alzheimer’s disease (AD) patients’ brain tissue. We previously demonstrated that antagonists of the sigma-2 receptor complex effectively block Aβ oligomer toxicity. CT1812 is an orally bioavailable, brain penetrant small molecule antagonist of the sigma-2 receptor complex that appears safe and well tolerated in healthy elderly volunteers. We tested CT1812’s effect on Aβ oligomer pathobiology in preclinical AD models and evaluated CT1812’s impact on cerebrospinal fluid (CSF) protein biomarkers in mild to moderate AD patients in a clinical trial (ClinicalTrials.gov NCT02907567). METHODS: Experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer binding to synapses in vitro, to human AD patient post mortem brain tissue ex vivo, and in living APP(Swe)/PS1dE9 transgenic mice in vivo. Additional experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer-induced deficits in membrane trafficking rate, synapse number, and protein expression in mature hippocampal/cortical neurons in vitro. The impact of CT1812 on cognitive function was measured in transgenic Thy1 huAPP(Swe/Lnd+) and wild-type littermates. A multicenter, double-blind, placebo-controlled parallel group trial was performed to evaluate the safety, tolerability, and impact on protein biomarker expression of CT1812 or placebo given once daily for 28 days to AD patients (Mini-Mental State Examination 18–26). CSF protein expression was measured by liquid chromatography with tandem mass spectrometry or enzyme-linked immunosorbent assay in samples drawn prior to dosing (Day 0) and at end of dosing (Day 28) and compared within each patient and between pooled treated versus placebo-treated dosing groups. RESULTS: CT1812 significantly and dose-dependently displaced Aβ oligomers bound to synaptic receptors in three independent preclinical models of AD, facilitated oligomer clearance into the CSF, increased synaptic number and protein expression in neurons, and improved cognitive performance in transgenic mice. CT1812 significantly increased CSF concentrations of Aβ oligomers in AD patient CSF, reduced concentrations of synaptic proteins and phosphorylated tau fragments, and reversed expression of many AD-related proteins dysregulated in CSF. DISCUSSION: These preclinical studies demonstrate the novel disease-modifying mechanism of action of CT1812 against AD and Aβ oligomers. The clinical results are consistent with preclinical data and provide evidence of target engagement and impact on fundamental disease-related signaling pathways in AD patients, supporting further development of CT1812

    The essential first step of Jesus-like influence : entering in (Video)

    No full text
    https://place.asburyseminary.edu/ecommonslectureships/1616/thumbnail.jp

    The two challenges of a life of Jesus-like influence : calling to and walking with (Video)

    No full text
    https://place.asburyseminary.edu/ecommonslectureships/1612/thumbnail.jp

    The distinctive of Jesus-like influence : serving (Video)

    No full text
    https://place.asburyseminary.edu/ecommonslectureships/1615/thumbnail.jp

    Metagenomic Profiling and Identification of Antimicrobial Resistance Genes from Airborne Microbial Communities

    Get PDF
    Antimicrobial resistance (AMR) is recognized as a severe threat to human and animal health worldwide, yet relatively little is known regarding the bioavailability of AMR genes in airborne microbial communities. Hence, the objective of our study is to use next generation sequencing (NGS) to assess the temporal dynamics of airborne bacterial communities as well as functional metagenomics to investigate the dispersion of AMR genes present within them
    corecore