2,222 research outputs found

    GeV Photons from Ultra High Energy Cosmic Rays accelerated in Gamma Ray Bursts

    Full text link
    Gamma-ray bursts are produced by the dissipation of the kinetic energy of a highly relativistic fireball, via the formation of a collisionless shock. When this happens, Ultra High Energy Cosmic Rays up to 10^20 eV are produced. I show in this paper that these particles produce, via synchrotron emission as they cross the acceleration region, photons up to 300 GeV which carry away a small, ~0.01, but non-negligible fraction of the total burst energy. I show that, when the shock occurs with the interstellar medium, the optical depth to photon-photon scattering, which might cause energy degradation of the photons, is small. The burst thusly produced would be detected at Earth simultaneoulsy with the parent gamma-ray burst, although its duration may differ significantly from that of the lower energy photons. The expected fluences, ~10^{-5}-10^{-6} erg/cm^2 are well within the range of planned detectors. A new explanation for the exceptional burst GRB 940217 is discussed.Comment: Accepted for publication in The Physical Review Letters. 4 pages, RevTeX needed, no figure

    High Energy Neutrinos from Astrophysical Sources: An Upper Bound

    Full text link
    We show that cosmic-ray observations set a model-independent upper bound to the flux of high-energy, > 10^14 eV, neutrinos produced by photo-meson (or p-p) interactions in sources of size not much larger than the proton photo-meson (or pp) mean-free-path. The bound applies, in particular, to neutrino production by either AGN jets or GRBs. This upper limit is two orders of magnitude below the flux predicted in some popular AGN jet models, but is consistent with our predictions from GRB models. We discuss the implications of these results for future km^2 high-energy neutrino detectors.Comment: Added discussion showing bound cannot be evaded by invoking magnetic fields. Accepted Phys Rev

    High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs

    Get PDF
    Observations suggest that γ\gamma-ray bursts (GRBs) are produced by the dissipation of the kinetic energy of a relativistic fireball. We show that a large fraction, 10\ge 10%, of the fireball energy is expected to be converted by photo-meson production to a burst of 1014eV\sim10^{14} eV neutrinos. A km^2 neutrino detector would observe at least several tens of events per year correlated with GRBs, and test for neutrino properties (e.g. flavor oscillations, for which upward moving τ\tau's would be a unique signature, and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.Comment: Submitted to PRL (4 pages, LaTeX

    The upstream magnetic field of collisionless GRB shocks: constraint by Fermi-LAT observations

    Full text link
    Long-lived >100 MeV emission has been a common feature of most Fermi-LAT detected gamma-ray bursts (GRBs), e.g., detected up to ~10^3s in long GRBs 080916C and 090902B and ~10^2s in short GRB 090510. This emission is consistent with being produced by synchrotron emission of electrons accelerated to high energy by the relativistic collisionless shock propagating into the weakly magnetized medium. Here we show that this high-energy afterglow emission constrains the preshock magnetic field to satisfy 1(n/1cc)^{9/8} mG<B<10^2(n/1cc)^{3/8}mG, where n is the preshock density, more stringent than the previous constraint by X-ray afterglow observations on day scale. This suggests that the preshock magnetic field is strongly amplified, most likely by the streaming of high energy shock accelerated particles.Comment: 9 pages, JCAP accepte

    Maximum Likelihood Analysis of Clusters of Ultra-High Energy Cosmic Rays

    Get PDF
    We present a numerical code designed to conduct a likelihood analysis for clusters of nucleons above 10**19 eV originating from discrete astrophysical sources such as powerful radio galaxies, gamma-ray bursts or topological defects. The code simulates the propagation of nucleons in a large-scale magnetic field and constructs the likelihood of a given observed event cluster as a function of the average time delay due to deflection in the magnetic field, the source activity time scale, the total fluence of the source, and the power law index of the particle injection spectrum. Other parameters such as the coherence length and the power spectrum of the magnetic field are also considered. We apply it to the three pairs of events above 4X10**19 eV recently reported by the Akeno Giant Air Shower Array (AGASA) experiment, assuming that these pairs were caused by nucleon primaries which originated from a common source. Although current data are too sparse to fully constrain each of the parameters considered, and/or to discriminate models of the origin of ultra-high energy cosmic rays, several tendencies are indicated. If the clustering suggested by AGASA is real, next generation experiments with their increased exposure should detect more than 10 particles per source over a few years and our method will put strong constraints on both the large-scale magnetic field parameters and the nature of these sources.Comment: 11 latex pages, 8 postscript figures included, uses revtex.sty in two-column format and epsf.sty. Submitted to Physical Review

    A Search for Correlation of Ultra-High Energy Cosmic Rays with IRAS-PSCz and 2MASS-6dF Galaxies

    Full text link
    We study the arrival directions of 69 ultra-high energy cosmic rays (UHECRs) observed at the Pierre Auger Observatory (PAO) with energies exceeding 55 EeV. We investigate whether the UHECRs exhibit the anisotropy signal expected if the primary particles are protons that originate in galaxies in the local universe, or in sources correlated with these galaxies. We cross-correlate the UHECR arrival directions with the positions of IRAS-PSCz and 2MASS-6dF galaxies taking into account particle energy losses during propagation. This is the first time that the 6dF survey is used in a search for the sources of UHECRs and the first time that the PSCz survey is used with the full 69 PAO events. The observed cross-correlation signal is larger for the PAO UHECRs than for 94% (98%) of realisations from an isotropic distribution when cross-correlated with the PSCz (6dF). On the other hand the observed cross-correlation signal is lower than that expected from 85% of realisations, had the UHECRs originated in galaxies in either survey. The observed cross-correlation signal does exceed that expected by 50% of the realisations if the UHECRs are randomly deflected by intervening magnetic fields by 5 degrees or more. We propose a new method of analysing the expected anisotropy signal, by dividing the predicted UHECR source distribution into equal predicted flux radial shells, which can help localise and constrain the properties of UHECR sources. We find that the 69 PAO events are consistent with isotropy in the nearest of three shells we define, whereas there is weak evidence for correlation with the predicted source distribution in the two more distant shells in which the galaxy distribution is less anisotropic.Comment: 23 pages, version published in JCA

    CRISPR-mediated reactivation of DKK3 expression attenuates TGF-beta signaling in prostate cancer

    Get PDF
    The DKK3 gene encodes a secreted protein, Dkk-3, that inhibits prostate tumor growth and metastasis. DKK3 is downregulated by promoter methylation in many types of cancer, including prostate cancer. Gene silencing studies have shown that Dkk-3 maintains normal prostate epithelial cell homeostasis by limiting TGF-β/Smad signaling. While ectopic expression of Dkk-3 leads to prostate cancer cell apoptosis, it is unclear if Dkk-3 has a physiological role in cancer cells. Here, we show that treatment of PC3 prostate cancer cells with the DNA methyltransferase (DNMT) inhibitor decitabine demethylates the DKK3 promoter, induces DKK3 expression, and inhibits TGF-β/Smad-dependent transcriptional activity. Direct induction of DKK3 expression using CRISPR-dCas9-VPR also inhibited TGF-β/Smad-dependent transcription and attenuated PC3 cell migration and proliferation. These effects were not observed in C4-2B cells, which do not respond to TGF-β. TGF-β signals can regulate gene expression directly via SMAD proteins and indirectly by increasing DNMT expression, leading to promoter methylation. Analysis of genes downregulated by promoter methylation and predicted to be regulated by TGF-β found that DKK3 induction increased expression of PTGS2, which encodes cyclooxygenase-2. Together, these observations provide support for using CRISPR-mediated induction of DKK3 as a potential therapeutic approach for prostate cancer and highlight complexities in Dkk-3 regulation of TGF-β signaling

    Well-posedness of Hydrodynamics on the Moving Elastic Surface

    Full text link
    The dynamics of a membrane is a coupled system comprising a moving elastic surface and an incompressible membrane fluid. We will consider a reduced elastic surface model, which involves the evolution equations of the moving surface, the dynamic equations of the two-dimensional fluid, and the incompressible equation, all of which operate within a curved geometry. In this paper, we prove the local existence and uniqueness of the solution to the reduced elastic surface model by reformulating the model into a new system in the isothermal coordinates. One major difficulty is that of constructing an appropriate iterative scheme such that the limit system is consistent with the original system.Comment: The introduction is rewritte
    corecore