65 research outputs found

    The Role of Defective Epithelial Barriers in Allergic Lung Disease and Asthma Development

    Full text link
    The respiratory epithelium constitutes the physical barrier between the human body and the environment, thus providing functional and immunological protection. It is often exposed to allergens, microbial substances, pathogens, pollutants, and environmental toxins, which lead to dysregulation of the epithelial barrier and result in the chronic inflammation seen in allergic diseases and asthma. This epithelial barrier dysfunction results from the disturbed tight junction formation, which are multi-protein subunits that promote cell-cell adhesion and barrier integrity. The increasing interest and evidence of the role of impaired epithelial barrier function in allergy and asthma highlight the need for innovative approaches that can provide new knowledge in this area. Here, we review and discuss the current role and mechanism of epithelial barrier dysfunction in developing allergic diseases and the effect of current allergy therapies on epithelial barrier restoration

    Crosstalk within peripheral blood mononuclear cells mediates anti-inflammatory effects of n-3 PUFA-rich lipid emulsions in parenteral nutrition

    Full text link
    Background and aims: Parenteral nutrition (PN) rich in n-6 and n-3 long-chain fatty acids is used in clinical practice for nourishing patients who are unable to receive adequate nutrition through their digestive systems. In this study, we compare the effect on inflammation of the commonly used lipid emulsions Omegaven (n-3-rich) and Intralipid (n-6-rich) in human peripheral blood mononuclear cells (PBMCs)

    Scaling of well log data for velocity models in seismics

    Get PDF
    The results from the mathematical operations of filtration and interpolation are presented for dynamic elastic parameters such as P-wave slowness and S-wave slowness, Young modulus and Poisson ratio. The parameters were obtained by interpreting acoustic full waveforms using FalaFWS application of GeoWin system and based on calculations using the Estymacja program. The subject of the analysis were the results obtained from various lithostratigraphic formations in several Polish Lowland's borehole profiles sampled from surface to a depth of more than 5 km. The goal was to scale well log data of a high vertical resolution for seismic purposes. Average values of the elastic parameters were presented for units derived out of geological interpretation. The analysis also included calculation of the Q parameter, which is a measure of energy dispertion of elastic waves in a rock formation

    Shale Gas in Poland

    Get PDF
    An example of interpretation of the Silurian and Ordovician shale formations in the Baltic Basin in Poland regarding determination of potential sweet spots is presented. Short geological information shows the position of shale gas play. Description of the data—laboratory measurement outcomes (petrophysical and geochemical) and well logging—presents results available for analyses. Detailed elemental analyses and various statistical classifications show the differentiation between sweet spots and adjacent formations. Elastic property modelling based on the known theoretical models and results of comprehensive interpretation of well logs is a good tool to complete information, especially in old wells. Acoustic emission investigations show additional characteristic features of shale gas rock and reveal that acoustic emission and volumetric strain of a shale sample induced by the sorption processes are lower for shale than for coals

    Molecular and Functional Characterization of MobK Protein—A Novel-Type Relaxase Involved in Mobilization for Conjugational Transfer of Klebsiella pneumoniae Plasmid pIGRK

    Get PDF
    Conjugation, besides transformation and transduction, is one of the main mechanisms of horizontal transmission of genetic information among bacteria. Conjugational transfer, due to its essential role in shaping bacterial genomes and spreading of antibiotics resistance genes, has been widely studied for more than 70 years. However, new and intriguing facts concerning the molecular basis of this process are still being revealed. Most recently, a novel family of conjugative relaxases (Mob proteins) was distinguished. The characteristic feature of these proteins is that they are not related to any of Mobs described so far. Instead of this, they share significant similarity to tyrosine recombinases. In this study MobK—a tyrosine recombinase-like Mob protein, encoded by pIGRK cryptic plasmid from the Klebsiella pneumoniae clinical strain, was characterized. This study revealed that MobK is a site-specific nuclease and its relaxase activity is dependent on both a conserved catalytic tyrosine residue (Y179) that is characteristic of tyrosine recombinases and the presence of Mg2+ divalent cations. The pIGRK minimal origin of transfer sequence (oriT) was also characterized. This is one of the first reports presenting tyrosine recombinase-like conjugative relaxase protein. It also demonstrates that MobK is a convenient model for studying this new protein family

    The cannabinoid WIN55212-2 restores rhinovirus-induced epithelial barrier disruption

    Get PDF
    Carta al Editor. Received: 19 September 2020 | Revised: 20 November 2020 | Accepted: 5 December 2020Sección Deptal. de Química Orgánica (Óptica y Optometría)Fac. de Óptica y OptometríaTRUEMinisterio de Economía y Competitividad de España (MINECO)Swiss National Science FoundationChristine Kühne‐Center for Allergy Research and Education (CK‐CARE) (Suiza)Universidad Complutense de Madrid (España)inpres

    Rhinovirus-induced epithelial RIG-I inflammasome suppresses antiviral immunity and promotes inflammation in asthma and COVID-19.

    Get PDF
    Rhinoviruses and allergens, such as house dust mite are major agents responsible for asthma exacerbations. The influence of pre-existing airway inflammation on the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. We analyse mechanisms of response to viral infection in experimental in vivo rhinovirus infection in healthy controls and patients with asthma, and in in vitro experiments with house dust mite, rhinovirus and SARS-CoV-2 in human primary airway epithelium. Here, we show that rhinovirus infection in patients with asthma leads to an excessive RIG-I inflammasome activation, which diminishes its accessibility for type I/III interferon responses, leading to their early functional impairment, delayed resolution, prolonged viral clearance and unresolved inflammation in vitro and in vivo. Pre-exposure to house dust mite augments this phenomenon by inflammasome priming and auxiliary inhibition of early type I/III interferon responses. Prior infection with rhinovirus followed by SARS-CoV-2 infection augments RIG-I inflammasome activation and epithelial inflammation. Timely inhibition of the epithelial RIG-I inflammasome may lead to more efficient viral clearance and lower the burden of rhinovirus and SARS-CoV-2 infections

    SOLARIS National Synchrotron Radiation Centre in Krakow, Poland

    Get PDF
    The SOLARIS synchrotron located in Krakow, Poland, is a third-generation light source operating at medium electron energy. The first synchrotron light was observed in 2015, and the consequent development of infrastructure lead to the first users’ experiments at soft X-ray energies in 2018. Presently, SOLARIS expands its operation towards hard X-rays with continuous developments of the beamlines and concurrent infrastructure. In the following, we will summarize the SOLARIS synchrotron design, and describe the beamlines and research infrastructure together with the main performance parameters, upgrade, and development plans
    corecore