6 research outputs found

    Lactobacillus rhamnosus GG soluble mediators ameliorate early life stress-induced visceral hypersensitivity and changes in spinal cord gene expression

    Get PDF
    peer-reviewedVisceral hypersensitivity is a hallmark of many functional and stress-related gastrointestinal disorders, and there is growing evidence that the gut microbiota may play a role in its pathophysiology. It has previously been shown that early life stress-induced visceral sensitivity is reduced by various probiotic strains of bacteria (including Lactobacillus rhamnosus GG (LGG)) alone or in combination with prebiotic fibres in rat models. However, the exact mechanisms underpinning such effects remain unresolved. Here, we investigated if soluble mediators derived from LGG can mimic the bacteria’s effects on visceral hypersensitivity and the microbiota–gut–brain axis. Rats were exposed to maternal separation (MS) from postnatal days 2–12. From weaning onwards both non-separated (NS) and MS offspring were provided drinking water with or without supplementation of standardized preparations of the LGG soluble mediators (LSM). Our results show that MS led to increased visceral sensitivity and exaggerated corticosterone plasma levels following restraint stress in adulthood, and both of these effects were ameliorated through LSM supplementation. Differential regulation of various genes in the spinal cord of MS versus NS rats was observed, 41 of which were reversed by LSM supplementation. At the microbiota composition level MS led to changes in beta diversity and abundance of specific bacteria including parabacteroides, which were ameliorated by LSM. These findings support probiotic soluble mediators as potential interventions in the reduction of symptoms of visceral hypersensitivity

    Dietary alpha-Lipoic Acid Alters Piglet Neurodevelopment

    No full text
    Introduction: Alpha-lipoic acid (a-LA) is an antioxidant shown to ameliorate age-associated impairments of brain and cardiovascular function. Human milk is known to have high antioxidant capacity, however the role of antioxidants in the developing brain is largely uncharacterized. This exploratory study aimed to examine the dose response effects of a-LA on piglet growth and neurodevelopment. Methods: Beginning at 2 d of age, 31 male pigs received one of three diets: control (CONT) [0 mg a-LA/100g], low a-LA (LOW) [120 mg a-LA/100g], or high a-LA (HIGH) [240 mg a-LA/100g]. From 14 to 28 d of age, pigs were subjected to spatial T-maze assessment and macrostructural and microstructural neuroimaging procedures were performed at 31 d of age.Results: No differences due to diet were observed for bodyweight gain or intestinal weight and length. Spatial T-maze assessment did not reveal learning differences due to diet in proportion of correct choices or latency to choice measures. Diffusion tensor imaging revealed decreased (P = 0.01) fractional anisotropy (FA) in the internal capsule of HIGH fed pigs compared with both the CONT (P < 0.01) and LOW (P = 0.03) fed pigs, which were not different from one another. Analysis of axial diffusivity (AD) within the internal capsule revealed a main effect of diet (P < 0.01) in which HIGH fed piglets exhibited smaller (P < 0.01) rates of diffusion compared with CONT piglets, but HIGH fed piglets were not different (P = 0.12) than LOW fed piglets. Tract-based spatial statistics, a comparison of FA values along white matter tracts, revealed 1,650 voxels where CONT piglets exhibited higher (P < 0.05) values compared with HIGH fed piglets. Conclusion: The lack of differences in intestinal and bodyweight measures among piglets indicate a-LA supplementation does not impact overall growth, regardless of concentration. Additionally, no observed differences between CONT and LOW fed piglets in behavior and neuroimaging measures indicate a low concentration of a-LA does not affect normal brain development. Supplementation of a-LA at a high concentration appeared to alter white matter maturation in the internal capsule, which may indicate delayed neurodevelopment in these piglets

    Dietary prebiotics, milk fat globule membrane and lactoferrin affects structural neurodevelopment in the young piglet

    No full text
    Introduction: Milk fat globule membrane (MFGM) and lactoferrin have been identified as two components that have potential to affect neurodevelopment. While concentrations of some MFGM constituents in infant formulas are within human milk range, they may not be present at optimal or clinically effective levels. However, lactoferrin levels of infant formulas are consistently reported to be lower than human milk. This study sought to provide a novel combination of prebiotics, bovine-derived milk fat globule membrane and lactoferrin and assess their influence on neurodevelopment. Methods: Twenty-four male piglets were provided either TEST (n=12) or CONT (n=12) diet from 2 to 31 d of age. Piglets underwent spatial T-maze assessment starting at 17 d of age, were subjected to magnetic resonance imaging at 30 d of age, and were euthanized for tissue collection at 31 d of age. Results: Diffusion tensor imaging revealed differences in radial (P = 0.032) and mean (P = 0.028) diffusivities in the internal capsule, where CONT piglets had higher rates of diffusion compared with TEST piglets. Voxel-based morphometry indicated larger (P < 0.05) differences in cortical grey and white matter concentrations, with CONT piglets having larger tissue clusters in these regions compared with TEST piglets. In the spatial T-maze assessment, CONT piglets exhibited shorter latency to choice compared with TEST piglets on d 2 of acquisition and d 3 and 4 of reversal. Conclusion: Observed differences in microstructure maturation of the internal capsule and cortical tissue concentrations suggest that piglets provided TEST diet were more advanced developmentally than piglets provided CONT diet. Therefore, supplementation of infant formula with prebiotics, milk fat globule membrane and lactoferrin may support neurodevelopment in human infants

    The enduring effects of early life stress on the microbiota-gut-brain axis are buffered by dietary supplementation with milk fat globule membrane and a prebiotic blend

    Get PDF
    Nutritional interventions targeting the microbiota-gut-brain axis are proposed to modulate stress-induced dysfunction of physiological processes and brain development. Maternal separation (MS) in rats induces long-term alterations to behavior, pain responses, gut microbiome and brain neurochemistry. In this study, the effects of dietary interventions (milk fat globule membrane (MFGM) and a polydextrose/galactooligosaccharide prebiotic blend (PDX/GOS)) were evaluated. Diets were provided from postnatal day 21 to both non-separated (NS) and MS offspring. Spatial memory, visceral sensitivity and stress reactivity were assessed in adulthood. Gene transcripts associated with cognition and stress and the caecal microbiota composition were analysed. MS-induced visceral hypersensitivity was ameliorated by MFGM and to greater extent with the combination of MFGM and prebiotic blend. Furthermore, spatial learning and memory were improved by prebiotics and MFGM alone and with the combination. The prebiotic blend and the combination of the prebiotics and MFGM appeared to facilitate return to baseline with regard to HPA axis response to the restraint stress which can be beneficial in times where coping mechanisms to stressful events are required. Interestingly, the combination of MFGM and prebiotic reduced the long-term impact of MS on a marker of myelination in the prefrontal cortex. MS affected the microbiota at family level only while MFGM, the prebiotic blend and the combination influenced abundance at family and genus level as well as influencing beta diversity levels. In conclusion, intervention with MFGM and prebiotic blend significantly impacted the composition of the microbiota as well as ameliorating some of the long-term effects of early-life stress
    corecore