7,047 research outputs found

    HZTool and Rivet: Toolkit and Framework for the Comparison of Simulated Final States and Data at Colliders

    Get PDF
    A common problem in particle physics is the requirement to reproduce comparisons between data and theory when the theory is a (general purpose) Monte Carlo simulation and the data are measurements of final state observables in high energy collisions. The complexity of the experiments, the obervables and the models all contribute to making this a highly non-trivial task. We describe an existing library of Fortran routines, HZTool, which enables, for each measurement of interest, a comparable prediction to be produced from any given Monte Carlo generator. The HZTool library is being maintained by CEDAR, with subroutines for various measurements contributed by a number of authors within and outside the CEDAR collaboration. We also describe the outline design and current status of a replacement for HZTool, to be called Rivet (Robust Independent Validation of Experiment and Theory). This will use an object-oriented design, implemented in C++, together with standard interfaces (such as HepMC and AIDA) to make the new framework more flexible and extensible than the Fortran HZTool.Comment: Contribution to CHEP06 conferenc

    HepData and JetWeb: HEP data archiving and model validation

    Get PDF
    The CEDAR collaboration is extending and combining the JetWeb and HepData systems to provide a single service for tuning and validating models of high-energy physics processes. The centrepiece of this activity is the fitting by JetWeb of observables computed from Monte Carlo event generator events against their experimentally determined distributions, as stored in HepData. Caching the results of the JetWeb simulation and comparison stages provides a single cumulative database of event generator tunings, fitted against a wide range of experimental quantities. An important feature of this integration is a family of XML data formats, called HepML.Comment: 4 pages, 0 figures. To be published in proceedings of CHEP0

    Transport and modeling of stratospheric inorganic chlorine

    No full text
    International audienceCorrectly modeling stratospheric inorganic chlorine (Cly) is crucial for modeling the past and future evolution of stratospheric ozone. However, comparisons of the chemistry climate models used in the latest international assessment of stratospheric ozone depletion have shown large differences in the modeled Cly, with these differences explaining differences in the simulated evolution of ozone over the next century. Here in, we examine the role of transport in determining the simulated Cly using three simulations from the same off-line chemical transport model that have the same lower tropospheric boundary conditions and the same chemical solver, but differing resolution and/or meteorological fields. These simulations show that transport plays a key role in determining the Cly distribution, and that Cly depends on both the time scales and pathways of transport. The time air spends in the stratosphere (e.g., the mean age) is an important transport factor determining stratospheric Cly, but the relationship between mean age and Cly is not simple. Lower stratospheric Cly depends on the fraction of air that has been in the upper stratosphere, and transport differences between models having the same mean age can result in differences in the fraction of organic chlorine converted into Cly. Differences in transport pathways result in differences in vertical profiles of CFCs, and comparisons of observed and modeled CFC profiles provides a stringent test of transport pathways in models

    An evaluation of genotyping by sequencing (GBS) to map the <em>Breviaristatum-e (ari-e)</em> locus in cultivated barley

    Get PDF
    ABSTRACT: We explored the use of genotyping by sequencing (GBS) on a recombinant inbred line population (GPMx) derived from a cross between the two-rowed barley cultivar ‘Golden Promise’ (ari-e.GP/Vrs1) and the six-rowed cultivar ‘Morex’ (Ari-e/vrs1) to map plant height. We identified three Quantitative Trait Loci (QTL), the first in a region encompassing the spike architecture gene Vrs1 on chromosome 2H, the second in an uncharacterised centromeric region on chromosome 3H, and the third in a region of chromosome 5H coinciding with the previously described dwarfing gene Breviaristatum-e (Ari-e). BACKGROUND: Barley cultivars in North-western Europe largely contain either of two dwarfing genes; Denso on chromosome 3H, a presumed ortholog of the rice green revolution gene OsSd1, or Breviaristatum-e (ari-e) on chromosome 5H. A recessive mutant allele of the latter gene, ari-e.GP, was introduced into cultivation via the cv. ‘Golden Promise’ that was a favourite of the Scottish malt whisky industry for many years and is still used in agriculture today. RESULTS: Using GBS mapping data and phenotypic measurements we show that ari-e.GP maps to a small genetic interval on chromosome 5H and that alternative alleles at a region encompassing Vrs1 on 2H along with a region on chromosome 3H also influence plant height. The location of Ari-e is supported by analysis of near-isogenic lines containing different ari-e alleles. We explored use of the GBS to populate the region with sequence contigs from the recently released physically and genetically integrated barley genome sequence assembly as a step towards Ari-e gene identification. CONCLUSIONS: GBS was an effective and relatively low-cost approach to rapidly construct a genetic map of the GPMx population that was suitable for genetic analysis of row type and height traits, allowing us to precisely position ari-e.GP on chromosome 5H. Mapping resolution was lower than we anticipated. We found the GBS data more complex to analyse than other data types but it did directly provide linked SNP markers for subsequent higher resolution genetic analysis

    Bath generated work extraction and inversion-free gain in two-level systems

    Full text link
    The spin-boson model, often used in NMR and ESR physics, quantum optics and spintronics, is considered in a solvable limit to model a spin one-half particle interacting with a bosonic thermal bath. By applying external pulses to a non-equilibrium initial state of the spin, work can be extracted from the thermalized bath. It occurs on the timescale \T_2 inherent to transversal (`quantum') fluctuations. The work (partly) arises from heat given off by the surrounding bath, while the spin entropy remains constant during a pulse. This presents a violation of the Clausius inequality and the Thomson formulation of the second law (cycles cost work) for the two-level system. Starting from a fully disordered state, coherence can be induced by employing the bath. Due to this, a gain from a positive-temperature (inversion-free) two-level system is shown to be possible.Comment: 4 pages revte

    HepForge: A lightweight development environment for HEP software

    Get PDF
    Setting up the infrastructure to manage a software project can become a task as significant writing the software itself. A variety of useful open source tools are available, such as Web-based viewers for version control systems, "wikis" for collaborative discussions and bug-tracking systems, but their use in high-energy physics, outside large collaborations, is insubstantial. Understandably, physicists would rather do physics than configure project management tools. We introduce the CEDAR HepForge system, which provides a lightweight development environment for HEP software. Services available as part of HepForge include the above-mentioned tools as well as mailing lists, shell accounts, archiving of releases and low-maintenance Web space. HepForge also exists to promote best-practice software development methods and to provide a central repository for re-usable HEP software and phenomenology codes.Comment: 3 pages, 0 figures. To be published in proceedings of CHEP06. Refers to the HepForge facility at http://hepforge.cedar.ac.u

    Sensitivity of stratospheric inorganic chlorine to differences in transport

    Get PDF
    International audienceCorrectly modeling stratospheric inorganic chlorine (Cly) is crucial for modeling the past and future evolution of stratospheric ozone. However, comparisons of the chemistry climate models used in the latest international assessment of stratospheric ozone depletion have shown large differences in the modeled Cly, with these differences explaining many of the differences in the simulated evolution of ozone over the next century. Here in, we examine the role of transport in determining the simulated Cly using three simulations from the same off-line chemical transport model that have the same lower tropospheric boundary conditions and the same chemical solver, but differing resolution and/or meteorological fields. These simulations show that transport plays a key role in determining the Cly distribution, and that Cly depends on both the time scales and pathways of transport. The time air spends in the stratosphere (e.g., the mean age) is an important transport factor determining stratospheric Cly, but the relationship between mean age and Cly is not simple. Lower stratospheric Cly depends on the fraction of air that has been in the upper stratosphere, and transport differences between models having the same mean age can result in differences in the fraction of organic chlorine converted into Cly. Differences in transport pathways result in differences in vertical profiles of CFCs, and comparisons of observed and modeled CFC profiles provide a stringent test of transport pathways in models

    Fast shower simulation in the ATLAS calorimeter

    Get PDF
    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ~1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper

    Quantum Computation with Quantum Dots

    Full text link
    We propose a new implementation of a universal set of one- and two-qubit gates for quantum computation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed within a newly derived spin master equation incorporating decoherence caused by a prototypical magnetic environment. Dot-array experiments which would provide an initial demonstration of the desired non-equilibrium spin dynamics are proposed.Comment: 12 pages, Latex, 2 ps figures. v2: 20 pages (very minor corrections, substantial expansion), submitted to Phys. Rev.

    Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier

    Full text link
    Building upon earlier work on the relation between the dimensionless interdot channel conductance g and the fractional Coulomb-blockade peak splitting f for two electrostatically equivalent dots, we calculate the leading correction that results from an interdot tunneling barrier that is not a delta-function but, rather, has a finite height V and a nonzero width xi and can be approximated as parabolic near its peak. We develop a new treatment of the problem for g much less than 1 that starts from the single-particle eigenstates for the full coupled-dot system. The finiteness of the barrier leads to a small upward shift of the f-versus-g curve at small values of g. The shift is a consequence of the fact that the tunneling matrix elements vary exponentially with the energies of the states connected. Therefore, when g is small, it can pay to tunnel to intermediate states with single-particle energies above the barrier height V. The correction to the zero-width behavior does not affect agreement with recent experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript figures included using eps
    corecore