19,320 research outputs found

    The Perceived Impact of the In-Trust Agreements on CGIAR Germplasm Availability: An Assessment of Bioversity International's Institutional Activities

    Get PDF
    This study assesses the generation and consequences of the In-Trust Agreements (ITAs) that established the legal status of the CGIAR germplasm as freely available for the benefit of humanity under the auspices of FAO. The analysis looks at the history of the ITAs and focuses on the role of Bioversity International in research and other activities in influencing, facilitating and enabling the ITA negotiations. Results confirm the central role of Bioversity and policy research in the negotiations process. Concepts developed during the ITA negotiations contributed toward subsequent multilateral negotiations that eventually culminated in the International Treaty on Plant Genetic Resources

    Identity and Search in Social Networks

    Full text link
    Social networks have the surprising property of being "searchable": Ordinary people are capable of directing messages through their network of acquaintances to reach a specific but distant target person in only a few steps. We present a model that offers an explanation of social network searchability in terms of recognizable personal identities: sets of characteristics measured along a number of social dimensions. Our model defines a class of searchable networks and a method for searching them that may be applicable to many network search problems, including the location of data files in peer-to-peer networks, pages on the World Wide Web, and information in distributed databases.Comment: 4 page, 3 figures, revte

    Synchronization is optimal in non-diagonalizable networks

    Full text link
    We consider the problem of maximizing the synchronizability of oscillator networks by assigning weights and directions to the links of a given interaction topology. We first extend the well-known master stability formalism to the case of non-diagonalizable networks. We then show that, unless some oscillator is connected to all the others, networks of maximum synchronizability are necessarily non-diagonalizable and can always be obtained by imposing unidirectional information flow with normalized input strengths. The extension makes the formalism applicable to all possible network structures, while the maximization results provide insights into hierarchical structures observed in complex networks in which synchronization plays a significant role.Comment: 4 pages, 1 figure; minor revisio

    Mean-field solution of the small-world network model

    Full text link
    The small-world network model is a simple model of the structure of social networks, which simultaneously possesses characteristics of both regular lattices and random graphs. The model consists of a one-dimensional lattice with a low density of shortcuts added between randomly selected pairs of points. These shortcuts greatly reduce the typical path length between any two points on the lattice. We present a mean-field solution for the average path length and for the distribution of path lengths in the model. This solution is exact in the limit of large system size and either large or small number of shortcuts.Comment: 14 pages, 2 postscript figure

    Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils

    Get PDF
    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota

    Chaos in Small-World Networks

    Full text link
    A nonlinear small-world network model has been presented to investigate the effect of nonlinear interaction and time delay on the dynamic properties of small-world networks. Both numerical simulations and analytical analysis for networks with time delay and nonlinear interaction show chaotic features in the system response when nonlinear interaction is strong enough or the length scale is large enough. In addition, the small-world system may behave very differently on different scales. Time-delay parameter also has a very strong effect on properties such as the critical length and response time of small-world networks

    Modularity and community structure in networks

    Full text link
    Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, simulated annealing is computationally costly. Here we show that the modularity can be reformulated in terms of the eigenvectors of a new characteristic matrix for the network, which we call the modularity matrix, and that this reformulation leads to a spectral algorithm for community detection that returns results of better quality than competing methods in noticeably shorter running times. We demonstrate the algorithm with applications to several network data sets.Comment: 7 pages, 3 figure

    Characterization and control of small-world networks

    Get PDF
    Recently Watts and Strogatz have given an interesting model of small-world networks. Here we concretise the concept of a ``far away'' connection in a network by defining a {\it far edge}. Our definition is algorithmic and independent of underlying topology of the network. We show that it is possible to control spread of an epidemic by using the knowledge of far edges. We also suggest a model for better advertisement using the far edges. Our findings indicate that the number of far edges can be a good intrinsic parameter to characterize small-world phenomena.Comment: 9 pages and 6 figure

    Epidemics and percolation in small-world networks

    Full text link
    We study some simple models of disease transmission on small-world networks, in which either the probability of infection by a disease or the probability of its transmission is varied, or both. The resulting models display epidemic behavior when the infection or transmission probability rises above the threshold for site or bond percolation on the network, and we give exact solutions for the position of this threshold in a variety of cases. We confirm our analytic results by numerical simulation.Comment: 6 pages, including 3 postscript figure
    • …
    corecore