1,311 research outputs found
TLR ligand-induced podosome disassembly in dendritic cells is ADAM17 dependent
Toll-like receptor (TLR) signaling induces a rapid reorganization of the actin cytoskeleton in cultured mouse dendritic cells (DC), leading to enhanced antigen endocytosis and a concomitant loss of filamentous actin–rich podosomes. We show that as podosomes are lost, TLR signaling induces prominent focal contacts and a transient reduction in DC migratory capacity in vitro. We further show that podosomes in mouse DC are foci of pronounced gelatinase activity, dependent on the enzyme membrane type I matrix metalloprotease (MT1-MMP), and that DC transiently lose the ability to degrade the extracellular matrix after TLR signaling. Surprisingly, MMP inhibitors block TLR signaling–induced podosome disassembly, although stimulated endocytosis is unaffected, which demonstrates that the two phenomena are not obligatorily coupled. Podosome disassembly caused by TLR signaling occurs normally in DC lacking MT1-MMP, and instead requires the tumor necrosis factor α–converting enzyme ADAM17 (a disintegrin and metalloprotease 17), which demonstrates a novel role for this “sheddase” in regulating an actin-based structure
Cloning and characterisation of the S.pombe rad15 gene, a homologue to the S.cerevisiae RAD3 and human ERCC2 genes
The RAD3 gene of Saccharomyces cerevisiae encodes an ATP-dependent 5' - 3' DNA helicase, which is involved in excision repair of ultraviolet radiation damage. By hybridisation of a Schizosaccharomyces pombe genomic library with a RAD3 gene probe we have isolated the S.pombe homologue of RAD3. We have also cloned the rad15 gene of S.pombe by complementation of radiation-sensitive phenotype of the rad15 mutant. Comparison of the restriction map and DNA sequence, shows that the S.pombe rad15 gene is identical to the gene homologous to S.cerevisiae RAD3, identified by hybridisation. The S.pombe rad15.P mutant is highly sensitive to UV radiation, but only slightly sensitive to ionising radiation, as expected for a mutant defective in excision repair. DNA sequence analysis of the rad15 gene indicates an open reading frame of 772 amino acids, and this is consistent with a transcript size of 2.6kb as detected by Northern analysis. The predicted rad15 protein has 65% identity to RAD3 and 55% identity to the human homologue ERCC2. This homology is particularly striking in the regions identified as being conserved in a group of DNA helicases. Gene deletion experiments indicate that, like the S.cerevisiae RAD3 gene, the S.pombe rad15 gene is essential for viability, suggesting that the protein product has a role in cell proliferation and not solely in DNA repair
Cloning and characterisation of the rad9 DNA repair gene from Schizosaccharomyces pombe
The rad9.192 DNA repair mutant from the fission yeast, Schizosaccharomyces pombe, is sensitive to both UV and ionising radiation. The rad9 gene has been cloned by complementation of the gamma-ray sensitivity of the mutant cell line. A 4.3kb HindIII fragment was found to confer resistance to both types of radiation. The region of complementation was further localised to a 2.6kb HindIII-EcoRV fragment, which, by DNA sequence analysis, was found to contain sequences capable of coding for a 427 amino acid protein, if three introns were postulated to remove stop codons. The introns were confirmed by sequence analysis of cDNA clones and PCR products derived from cDNA. The product of transcription is a 1.6kb mRNA of low abundance. The putative rad9 protein shows no homology to any published sequence. A truncated protein is capable of complementing the radiation sensitivity of the rad9.192 mutant. Deletion of the gene is not lethal and the null allele has a similar phenotype to the rad9.192 mutant
The orientation-preserving diffeomorphism group of S^2 deforms to SO(3) smoothly
Smale proved that the orientation-preserving diffeomorphism group of S^2 has
a continuous strong deformation retraction to SO(3). In this paper, we
construct such a strong deformation retraction which is diffeologically smooth.Comment: 16 page
LDEF data: Comparisons with existing models
The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings
Paradoxical popups: Why are they hard to catch?
Even professional baseball players occasionally find it difficult to
gracefully approach seemingly routine pop-ups. This paper describes a set of
towering pop-ups with trajectories that exhibit cusps and loops near the apex.
For a normal fly ball, the horizontal velocity is continuously decreasing due
to drag caused by air resistance. But for pop-ups, the Magnus force (the force
due to the ball spinning in a moving airflow) is larger than the drag force. In
these cases the horizontal velocity decreases in the beginning, like a normal
fly ball, but after the apex, the Magnus force accelerates the horizontal
motion. We refer to this class of pop-ups as paradoxical because they appear to
misinform the typically robust optical control strategies used by fielders and
lead to systematic vacillation in running paths, especially when a trajectory
terminates near the fielder. In short, some of the dancing around when
infielders pursue pop-ups can be well explained as a combination of bizarre
trajectories and misguidance by the normally reliable optical control strategy,
rather than apparent fielder error. Former major league infielders confirm that
our model agrees with their experiences.Comment: 28 pages, 10 figures, sumitted to American Journal of Physic
Constrained Optimization Applied to the Parameter Setting Problem for Analog Circuits
We use constrained optimization to select operating parameters for two circuits: a simple 3-transistor square root circuit, and an analog VLSI artificial cochlea. This automated method uses computer controlled measurement
and test equipment to choose chip parameters which minimize
the difference between the actual circuit's behavior and a specified goal behavior. Choosing the proper circuit parameters is important to compensate for manufacturing deviations or adjust circuit performance within
a certain range. As biologically-motivated analog VLSI circuits become increasingly complex, implying more parameters, setting these parameters by hand will become more cumbersome. Thus an automated parameter
setting method can be of great value [Fleischer 90]. Automated parameter setting is an integral part of a goal-based engineering design methodology in which circuits are constructed with parameters enabling a wide range
of behaviors, and are then "tuned" to the desired behaviors automatically
Evolutionary conservation of excision repair in Schizosaccharomyces pombe: Evidence for a family of sequences related to the Saccharomyces cerevisiae RAD2 gene
Cells mutated at the rad13 locus in the fission yeast, Schizosaccharomyces pombe are deficient in excision-repair of UV damage. We have cloned the S.pombe rad13 gene by its ability to complement the UV sensitivity of a rad13 mutant. The gene is not essential for cell proliferation. Sequence analysis of the cloned gene revealed an open reading-frame of 1113 amino acids with structural homology to the RAD2 gene of the distantly related Saccharomyces cerevisiae. The sequence similarity is confined to three domains, two close to the N-terminus of the encoded protein, the third being close to the C-terminus. The central region of about 500 amino acids shows little similarity between the two organisms. The first and third domains are also found in a related yet distinct pair of homologous S.pombe/S.cerevisiae DNA repair genes (rad2/YKL510), which have only a very short region between these two conserved domains. Using the polymerase chain reaction with degenerate primers, we have isolated fragments from a gene homologous to rad13/RAD2 from Aspergillus nidulans. These findings define new functional domains involved in excision-repair, as well as identifying a conserved family of genes related to RAD2
Rational choice meets the new politics: choosing the Scottish Parliament’s electoral system
Although there has been extensive research about electoral system choice at the national level, we know relatively little about the dynamics of deciding the rules of the game for sub-state institutions. This article examines the factors that influenced the choice of a proportional electoral system for the new Scottish Parliament in 1999. Through the use of archival sources and interviews with key participants, we challenge the conventional rational choice explanation for the adoption of the mixed-member proportional (MMP) system. Although rational considerations on the part of the Labour Party were involved in the choice of MMP, our findings suggest that, as at the national level, theories of electoral system choice need to consider normative values as well
Damage areas on selected LDEF aluminum surfaces
With the U.S. about to embark on a new space age, the effects of the space environment on a spacecraft during its mission lifetime become more relevant. Included among these potential effects are degradation and erosion due to micrometeoroid and debris impacts, atomic oxygen and ultraviolet light exposure as well as material alteration from thermal cycling, and electron and proton exposure. This paper focuses on the effects caused by micrometeoroid and debris impacts on several LDEF aluminum plates from four different bay locations: C-12, C-10, C-01, and E-09. Each plate was coated with either a white, black, or gray thermal paint. Since the plates were located at different orientations on the satellite, their responses to the hypervelocity impacts varied. Crater morphologies range from a series of craters, spall zones, domes, spaces, and rings to simple craters with little or no spall zones. In addition, each of these crater morphologies is associated with varying damage areas, which appear to be related to their respective bay locations and thus exposure angles. More than 5% of the exposed surface area examined was damaged by impact cratering and its coincident effects (i.e., spallation, delamination and blow-off). Thus, results from this analysis may be significant for mission and spacecraft planners and designers
- …
