34 research outputs found

    The Co-Morbidity Burden of Children and Young Adults with Autism Spectrum Disorders

    Get PDF
    Objectives: Use electronic health records Autism Spectrum Disorder (ASD) to assess the comorbidity burden of ASD in children and young adults. Study Design: A retrospective prevalence study was performed using a distributed query system across three general hospitals and one pediatric hospital. Over 14,000 individuals under age 35 with ASD were characterized by their co-morbidities and conversely, the prevalence of ASD within these comorbidities was measured. The comorbidity prevalence of the younger (Age<18 years) and older (Age 18–34 years) individuals with ASD was compared. Results: 19.44% of ASD patients had epilepsy as compared to 2.19% in the overall hospital population (95% confidence interval for difference in percentages 13.58–14.69%), 2.43% of ASD with schizophrenia vs. 0.24% in the hospital population (95% CI 1.89–2.39%), inflammatory bowel disease (IBD) 0.83% vs. 0.54% (95% CI 0.13–0.43%), bowel disorders (without IBD) 11.74% vs. 4.5% (95% CI 5.72–6.68%), CNS/cranial anomalies 12.45% vs. 1.19% (95% CI 9.41–10.38%), diabetes mellitus type I (DM1) 0.79% vs. 0.34% (95% CI 0.3–0.6%), muscular dystrophy 0.47% vs 0.05% (95% CI 0.26–0.49%), sleep disorders 1.12% vs. 0.14% (95% CI 0.79–1.14%). Autoimmune disorders (excluding DM1 and IBD) were not significantly different at 0.67% vs. 0.68% (95% CI −0.14-0.13%). Three of the studied comorbidities increased significantly when comparing ages 0–17 vs 18–34 with p<0.001: Schizophrenia (1.43% vs. 8.76%), diabetes mellitus type I (0.67% vs. 2.08%), IBD (0.68% vs. 1.99%) whereas sleeping disorders, bowel disorders (without IBD) and epilepsy did not change significantly. Conclusions: The comorbidities of ASD encompass disease states that are significantly overrepresented in ASD with respect to even the patient populations of tertiary health centers. This burden of comorbidities goes well beyond those routinely managed in developmental medicine centers and requires broad multidisciplinary management that payors and providers will have to plan for

    Integrins as therapeutic targets: lessons and opportunities.

    Get PDF
    The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets

    Comorbidities of ASD in younger (0–17 years) vs older (18–34 years).

    No full text
    <p>All the comorbidities' prevalence were significantly different (p<0.0001 by Chi square) <i>except</i> for bowel disorders, epilepsy, autoimmune disorders (excluding IBD and DM1) and sleep disorders.</p

    Quadratic growth in the number of edges in a communication network.

    No full text
    <p>Each edge incurs administrative overhead to maintain a list of peer locations and trust relationships. Fully meshed peer-to-peer (P2P) topologies have N*(N-1)/2 edges shown in red. Edge growth of hub-spoke topologies are shown with an average hub size of 3 (size of the first deployments of east and west coast networks). A simple hub-spoke topology requires one additional link per hub, shown in green. A fault tolerant topology requires two additional links per hub, shown in purple. With 60 peers, the number of p2p edges is administratively infeasible with 1,770 firewall rules and trust relationships.</p

    Proportions of morbidity in the subpopulation with ASD and that of the hospital population.

    No full text
    <p>Confidence interval shown is the 95<sup>th</sup> for the difference in the proportions. The columns 2,3 describe the proportions for all ages, columns 4,5 ages 0–17 and columns 6,7 ages 18–34).</p

    Hospital Data Mapping Scenario.

    No full text
    <p><i>First</i>, existing clinical data are extracted into a locally controlled database for research. <i>Second</i>, each local code is mapped to one or more standard concept codes, and vice versa. <i>Third</i>, related medical concepts are grouped using standard hierarchies curated by medical experts. The bipartite graphs produced by this process enable bidirectional translation between concept systems. <i>Fourth</i>, adapt the incoming query to use the local concept codes.</p

    Biophysical Investigation of the Mode of Inhibition of Tetramic Acids, the Allosteric Inhibitors of Undecaprenyl Pyrophosphate Synthase

    No full text
    Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation of eight molecules of isopentenyl pyrophosphate (IPP) with farnesyl pyrophosphate (FPP) to generate the C<sub>55</sub> undecaprenyl pyrophosphate (UPP). It has been demonstrated that tetramic acids (TAs) are selective and potent inhibitors of UPPS, but the mode of inhibition was unclear. In this work, we used a fluorescent FPP probe to study possible TA binding at the FPP binding site. A photosensitive TA analogue was designed and synthesized for the study of the site of interaction of TA with UPPS using photo-cross-linking and mass spectrometry. The interaction of substrates with UPPS and with the UPPS·TA complex was investigated by protein fluorescence spectroscopy. Our results suggested that tetramic acid binds to UPPS at an allosteric site adjacent to the FPP binding site. TA binds to free UPPS enzyme but not to substrate-bound UPPS. Unlike <i>Escherichia coli</i> UPPS which follows an ordered substrate binding mechanism, <i>Streptococcus pneumoniae</i> UPPS appears to follow a random-sequential substrate binding mechanism. Only one substrate, FPP or IPP, is able to bind to the UPPS·TA complex, but the quaternary complex, UPPS·TA·FPP·IPP, cannot be formed. We propose that binding of TA to UPPS significantly alters the conformation of UPPS needed for proper substrate binding. As the result, substrate turnover is prevented, leading to the inhibition of UPPS catalytic activity. These probe compounds and biophysical assays also allowed us to quickly study the mode of inhibition of other UPPS inhibitors identified from a high-throughput screening and inhibitors produced from a medicinal chemistry program
    corecore