2 research outputs found

    Recipient IL28B polymorphism is an important independent predictor of posttransplant diabetes mellitus in liver transplant patients with chronic hepatitis C

    Get PDF
    IL28B polymorphisms are strongly associated with response to treatment for HCV infection. IL28B acts on interferon-stimulated genes via the JAK-STAT pathway, which has been implicated in development of insulin resistance. We investigated whether IL28B polymorphisms are associated with posttransplant diabetes mellitus (DM). Consecutive HCV patients who underwent liver transplantation between 1-1995 and 1-2011 were studied. Genotyping of the polymorphism rs12979860 was performed on DNA collected from donors and recipients. Posttransplant DM was screened for by fasting blood glucoses every 1-3 months. Of 221 included patients, 69 developed posttransplant DM (31%). Twenty-two patients with recipient IL28B genotype TT (48%), 25 with IL28B genotype CT (25%) and 22 with IL28B genotype CC (29%) developed posttransplant DM. TT genotype was statistically significantly associated with posttransplant DM over time (log rank p = 0.012 for TT vs. CT and p = 0.045 for TT vs. CC). Multivariate Cox regression analysis correcting for donor age, body mass index, baseline serum glucose, baseline serum cholesterol, recipient age and treated rejection, showed that recipient IL28B genotype TT was independently associated with posttransplant DM (hazard ratio 2.51; 95% confidence interval 1.17-5.40; p = 0.011). We conclude that the risk of developing posttransplant DM is significantly increased in recipients carrying the TT polymorphism of the IL28B gene. An analysis of liver transplant recipients with hepatitis C virus infection finds that the risk of developing posttransplant diabetes mellitus is significantly increased in recipients carrying the TT polymorphism of the IL28B gene

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore